分析 (1)問題掌握ax2-4x+a>0恒成立,通過討論a的范圍,結(jié)合函數(shù)的性質(zhì)求出a的范圍即可;(2)通過討論p,q的真假,確定a的范圍即可.
解答 解:(1)若函數(shù)f(x)=lg(ax2-4x+a)的定義域?yàn)镽,
則ax2-4x+a>0恒成立.
若a=0,則不等式為-4x>0,即x<0,不滿足條件.
若a≠0,則$\left\{\begin{array}{l}{a>0}\\{△=16-{4a}^{2}<0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>0}\\{{a}^{2}>4}\end{array}\right.$,
解得a>2,即命題p為真命題,實(shí)數(shù)a的取值范圍a>2;
(2)如果命題“p∨q”為真命題,命題“p∧q”為假命題,
則p,q一真一假,
q:由于△=a2+4>0,q真?g(1)g(3)<0,解得:-1<a<$\frac{7}{3}$,
p真q假時(shí):a∈[$\frac{7}{3}$,+∞),p假q真時(shí):a∈(-1,2],
綜上,a∈[$\frac{7}{3}$,+∞)∪(-1,2].
點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,考查二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 重合 | C. | 垂直 | D. | 夾角等于$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5,+∞) | B. | (-∞,0) | C. | (-∞,0)∪(5,+∞) | D. | (-∞,0),$(\frac{5}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com