已知y=2sin(ωx+φ)與y軸交于點(0,
3
),則φ的值是
 
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正弦函數(shù)的圖象和性質(zhì)即可得到結(jié)論.
解答: 解:∵y=2sin(ωx+φ)與y軸交于點(0,
3
),
∴2sinφ=
3

∴sinφ=
3
2
,
則φ=
π
3
+
2kπ或
3
+2kπ,k∈Z,
故答案為:φ=
π
3
+
2kπ或
3
+2kπ,k∈Z
點評:本題主要考查三角函數(shù)值的應(yīng)用,根據(jù)正弦函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項均為正數(shù)的等比數(shù)列,a1=b1=1且a2=b1+1,a3=b3+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為Sn,求滿足Sn-
an+1
n
>100的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,焦點為P,平面上一定點A(m,0),滿足
OA
=2
PA
,過A作直線l,過原點作l的垂線,垂足為Q,則Q的軌跡方程為( 。
A、y=2x(x≠0)
B、x2+y2=1(x≠0)
C、(x-1)2+y2=1(y≠0)
D、x2-2xy+y2=0(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若
S5
S10
=
1
3
,則
S5
S20
=( 。
A、
1
9
B、
1
10
C、
1
8
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:平行于三棱錐的兩條相對棱的平面截三棱錐所得的截面是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的方向向量
s1
=(1.1,1),直線l2的方向向量
s2
=(-2.2,-2),則l1,l2夾角的余弦值為(  )
A、-
1
3
B、
1
3
C、
2
2
3
D、-
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在可行域
2x-y≥0
x-2y≤0
x+y-3≤0
,使得目標(biāo)函數(shù)z=2x-4y,取得最大值的最優(yōu)解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
4
).
求(1)最小周期.
(2)單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.
(3)對稱軸方程和對稱中心.
(4)判斷奇偶性.
(5)若x∈[0,
π
2
],求函數(shù)的值域,并求出當(dāng)函數(shù)取得最大值時,自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列各對直線的位置關(guān)系,如果相交,求出交點的坐標(biāo):
(1)l1:2x-3y=7,l2:4x+2y=1;
(2)l1:2x-6y+4=0,l2:y=
x
3
+
2
3
;
(3)l1:(
2
-1)x+y=3,l2:x+(
2
+1)y=2.

查看答案和解析>>

同步練習(xí)冊答案