【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租車時(shí)間不超過兩小時(shí)免費(fèi),超過兩小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立來(lái)該租車點(diǎn)租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為 , ;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為 , ;兩人租車時(shí)間都不會(huì)超過四小時(shí). (Ⅰ)求甲乙兩人所付的租車費(fèi)用相同的概率.
(Ⅱ)設(shè)甲乙兩人所付的租車費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

【答案】解:(Ⅰ)甲乙兩人租車時(shí)間超過三小時(shí)的概率分別為: , 甲乙兩人所付的租車費(fèi)用相同的概率p=
(Ⅱ)隨機(jī)變量ξ的所有取值為0,2,4,6,8
P(ξ=0)= =
P(ξ=2)= =
P(ξ=4)= =
P(ξ=6)= =
P(ξ=8)= =
數(shù)學(xué)期望Eξ= =
【解析】(Ⅰ)首先求出兩個(gè)人租車時(shí)間超過三小時(shí)的概率,甲乙兩人所付的租車費(fèi)用相同即租車時(shí)間相同:都不超過兩小時(shí)、都在兩小時(shí)以上且不超過三小時(shí)和都超過三小時(shí)三類求解即可.(Ⅱ)隨機(jī)變量ξ的所有取值為0,2,4,6,8,由獨(dú)立事件的概率分別求概率,列出分布列,再由期望的公式求期望即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人要對(duì)C處進(jìn)行考察,甲在A處,乙在B處,基地在O處,此時(shí)∠AOB=90°,測(cè)得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如圖所示,試問甲、乙兩人應(yīng)以什么方向走,才能使兩人的行程之和最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t)(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為(
A.﹣2
B.﹣4
C.﹣8
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓C1 =1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在由圓O:x2+y2=1和橢圓C: =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為 ,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 = ,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);

(2)求函數(shù)的單調(diào)遞增區(qū)間;

(3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斜棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥面ABC,側(cè)面AA1C1C為菱形,∠A1AC=60°,E,F(xiàn)分別為A1C1和AB的中點(diǎn).

(1)求證:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱長(zhǎng)為2,求三棱柱F﹣ECB的體積;
(3)D為棱BC上一點(diǎn),若C1D∥EF,請(qǐng)確定點(diǎn)D位置,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案