已知
i
j
分別是與x軸、y軸正方向相同的單位向量,
OB1
=a•
i
+2
j
(a∈R),對(duì)任意正整數(shù)n,
BnBn+1
=51•
i
+3•2n-1
j

(1)若
OB1
B2B3
,求a的值;
(2)求向量
OBn
;
(3)設(shè)向量
OBn
=xn
i
+yn
j
,求最大整數(shù)a的值,使對(duì)任意正整數(shù)n,都有xn<yn成立.
(1)由題意
B2B3
=51
i
+6
j
,
所以51a+12=0,
解得a=-
4
17
.(5分)
(2)
OBn
=
OB1
+
B1B2
+
B2B3
+…+
Bn-1Bn

=a•
i
+2•
j
+51(n-1)
i
+(3+3•2+…+3•2n-2)
j

=(51n+a-51)
i
+(3•2n-1-1)
j
(10分)
(3)xn=51n+a-51,yn=3•2n-1-1,
由51n+a-51<3•2n-1-1恒成立,
得a<3•2n-1-51n+50恒成立,
令an=3•2n-1-51n+50,
只需求數(shù)列{an}得最小項(xiàng).(13分)
anan+1
anan-1

得6≤n≤6,
即n=6,
a6=-160,
所以a=-161.(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
、
j
分別是與x軸、y軸方向相同的單位向量,且
AC
=-3
i
+6
j
BC
=-6
i
+4
j
,
BD
=-
i
-6
j
,則一定共線的三點(diǎn)是( 。
A、A,B,C
B、A,B,D
C、A,C,D
D、B,C,D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
,
j
分別是與x軸,y軸正方向相同的單位向量,
OB1
=
ai
-
6j
 (a∈R),對(duì)任意正整數(shù)n,
BnBn+1
=
6i
+3•2n-1
j

(1)若
OB1
B2B3
,求a的值;
(2)求向量
OBn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
,
j
分別是與x軸,y軸正方向相同的單位向量,
OB1
=a
i
-6
j
(a∈R),對(duì)任意正整數(shù)n,
BnBn+1
=6
i
+3•2n-1
j

(1)若
OB1
B2B3
,求a的值;
(2)求向量
OBn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
j
分別是與x軸,y軸正方向相同的單位向量,
OB1
=a
i
-6
j
(a∈R),對(duì)任意正整數(shù)n,
BnBn+1
=6
i
+3•2n-1
j

(1)若
OB1
B2B3
,求a的值;
(2)求向量
OB3
;
(3)求向量
OBn
(用n、a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•寶山區(qū)一模)已知
i
、
j
分別是與x軸、y軸正方向相同的單位向量,
OB1
=a•
i
+2
j
(a∈R),對(duì)任意正整數(shù)n,
BnBn+1
=51•
i
+3•2n-1
j

(1)若
OB1
B2B3
,求a的值;
(2)求向量
OBn
;
(3)設(shè)向量
OBn
=xn
i
+yn
j
,求最大整數(shù)a的值,使對(duì)任意正整數(shù)n,都有xn<yn成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案