【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和交于,兩點(diǎn),點(diǎn),若,,成等比數(shù)列,求的值.
【答案】(1)曲線的普通方程是:,曲線的直角坐標(biāo)方程為:; (2)
【解析】
(1)根據(jù)參數(shù)方程化普通方程、極坐標(biāo)與直角坐標(biāo)互化的原則進(jìn)行化簡(jiǎn)即可得到結(jié)果;(2)利用在上,可寫出直線參數(shù)方程的標(biāo)準(zhǔn)形式;將參數(shù)方程代入的普通方程,利用的幾何意義可知:,,;根據(jù),,成等比數(shù)列,結(jié)合韋達(dá)定理可得到關(guān)于的方程,解方程求得結(jié)果.
(1)由題意得:曲線的普通方程是:
曲線的直角坐標(biāo)方程為:
(2)易知在上 可設(shè)直線的參數(shù)方程為:(為參數(shù))
將直線的參數(shù)方程代入曲線的普通方程,可得:
,整理可得:
設(shè)對(duì)應(yīng)的參數(shù)分別是,則,,
,
又,,成等比數(shù)列
則
即:,解得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從甲、乙兩地區(qū)分別隨機(jī)調(diào)查了100個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,分別得到甲地區(qū)和乙地區(qū)用戶滿意度評(píng)分的頻率分布直方圖.
若甲地區(qū)和乙地區(qū)用戶滿意度評(píng)分的中位數(shù)分別為m1,m2;平均數(shù)分別為s1,s2,則下面正確的是( 。
A. m1>m2,s1>s2B. m1>m2,s1<s2
C. m1<m2,s1<s2D. m1<m2,s1>s2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:,,其中,數(shù)列滿足:
(1)當(dāng)時(shí),求的值;
(2)證明:對(duì)任意均成立,并求數(shù)列的通項(xiàng)公式;
(3)是否存在正數(shù),使得數(shù)列的每一項(xiàng)均為整數(shù),如果不存在,說明理由,如果存在,求出所有的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),關(guān)于的不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定直線m:y=2x-16,拋物線C:y2=ax(a>0).
(1)當(dāng)拋物線C的焦點(diǎn)在直線m上時(shí),確定拋物線C的方程;
(2)若△ABC的三個(gè)頂點(diǎn)都在(1)所確定的拋物線C上,且點(diǎn)A的縱坐標(biāo)y=8,△ABC的重心恰在拋物線C的焦點(diǎn)上,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線,點(diǎn),是拋物線上的動(dòng)點(diǎn).
(1)求的最小值及相應(yīng)點(diǎn)的坐標(biāo);
(2)點(diǎn)到直線距離的最小值及相應(yīng)點(diǎn)的坐標(biāo);
(3)直線過點(diǎn)與拋物線交于、兩點(diǎn),交直線于點(diǎn),若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蔬菜批發(fā)市場(chǎng)銷售某種蔬菜,在一個(gè)銷售周期內(nèi),每售出1噸該蔬菜獲利500元,未售出的蔬菜低價(jià)處理,每噸虧損100元.統(tǒng)計(jì)該蔬菜以往100個(gè)銷售周期的市場(chǎng)需求量,繪制下圖所示頻率分布直方圖.
(Ⅰ)求的值,并求100個(gè)銷售周期的平均市場(chǎng)需求量(以各組的區(qū)間中點(diǎn)值代表該組的數(shù)值);
(Ⅱ)若經(jīng)銷商在下個(gè)銷售周期購進(jìn)了190噸該蔬菜,設(shè)為該銷售周期的利潤(單位:元),為該銷售周期的市場(chǎng)需求量(單位:噸).求與的函數(shù)解析式,并估計(jì)銷售的利潤不少于86000元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com