精英家教網(wǎng)如圖所示,某幾何體的主視圖、左視圖均是等腰三角形,俯視圖是正方形,則該幾何體的全面積(單位:cm3)為( 。
A、4+4
3
B、12
C、4+8
3
D、20
分析:由三視圖及題設(shè)條件知,此幾何體為一個四棱錐,其高已知,底面是一個正方形,故先求出底面積,四個側(cè)面積,再相加求解其表面積即可
解答:解:此幾何體是一個正四棱錐
   其底面為邊長是2的正方形,故其面積為4
   又其高為
3
,頂點在底面的投影為底面正方形的中心,
   故可求得其側(cè)高為
12+(
3
)
2
=2
   則其一個側(cè)面的面積為
1
2
×2×2
=2,故此正四棱錐的側(cè)面積為4×2=8
    該幾何體的全面積是12cm3
       故選B
點評:本題考點是由三視圖求幾何體的面積、體積,考查對三視圖的理解與應(yīng)用,主要考查三視圖與實物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,本題求的是四棱錐的全面積,求出各個面的面積,相加既得.三視圖的投影規(guī)則是:“主視、俯視 長對正;主視、左視高平齊,左視、俯視 寬相等”,三視圖是新課標(biāo)的新增內(nèi)容,在以后的高考中有加強的可能.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,某幾何體的正視圖、側(cè)視圖均為半圓和等邊三角形的組合,俯視圖為圓形,則該幾何體的全面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,某幾何體的主視圖、左視圖均是等腰三角形,俯視圖是正方形.則該幾何體的全面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為某幾何體的直觀圖和三視圖,上半部分是四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.
(1)求該幾何體的體積;
(2)證明:直線BD⊥平面PEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•許昌三模)如圖所示為某幾何體的三視圖,均是直角邊長為1的等腰直角三角形,則此幾何體的表面積是( 。

查看答案和解析>>

同步練習(xí)冊答案