【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計師的你,對TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子

【答案】C

【解析】

對每一個選項逐一分析研究得解.

A.,所以她的身材不完美,需要改善,所以該選項是錯誤的;

B.假設(shè)她需要戴上高度為x厘米的帽子,則,顯然不符合實際,所以該選項是錯誤的;

C.假設(shè)她可以穿一雙合適高度為y的增高鞋,則,所以該選項是正確的;

D.假設(shè)同時穿戴同樣高度z的增高鞋與帽子,則,顯然不符合實際,所以該選項是錯誤的.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代數(shù)學(xué)名著《九章算術(shù)》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

(1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

(2)如圖,已知垂足為,垂足為.

(i)證明:平面⊥平面;

(ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點M在線段EF上運動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機支付儼然成為新寵.某金融機構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當(dāng)x>0時,f(x)≤x;
(Ⅱ)設(shè) ,若g(x)≥0對x>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+m|.
(Ⅰ) 解關(guān)于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當(dāng)x≠0時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點為坐標(biāo)原點,橢圓的右頂點為,上頂點為,過點且斜率為的直線與直線相交于點,且.

(1)求橢圓的離心率;

(2)是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某精密儀器生產(chǎn)有兩道相互獨立的先后工序,每道工序都要經(jīng)過相互獨立的工序檢查,且當(dāng)?shù)谝坏拦ば驒z查合格后才能進(jìn)入第二道工序,兩道工序都合格,產(chǎn)品才完全合格,.經(jīng)長期監(jiān)測發(fā)現(xiàn),該儀器第一道工序檢查合格的概率為 ,第二道工序檢查合格的概率為 ,已知該廠三個生產(chǎn)小組分別每月負(fù)責(zé)生產(chǎn)一臺這種儀器.
(1)求本月恰有兩臺儀器完全合格的概率;
(2)若生產(chǎn)一臺儀器合格可盈利5萬元,不合格則要虧損1萬元,記該廠每月的贏利額為ξ,求ξ的分布列和每月的盈利期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯誤的是( )

A. 的極小值點,則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對稱圖形

D. 的極值點,則

查看答案和解析>>

同步練習(xí)冊答案