【題目】設(shè)函數(shù)f(x)=|x+m|.
(Ⅰ) 解關(guān)于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當(dāng)x≠0時(shí),證明: .
【答案】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等價(jià)于|m+1|+|m﹣2|≥5,
可化為 ,解得m≤﹣2;
或 ,無解;
或 ,解得m≥3;
綜上不等式解集為(﹣∞,﹣2]∪[3,+∞)
(Ⅱ)證明:當(dāng)x≠0時(shí), ,|x|>0,
【解析】(Ⅰ)問題等價(jià)于|m+1|+|m﹣2|≥5,通過討論m的范圍,求出不等式的解集即可;(Ⅱ)根據(jù)絕對值的性質(zhì)證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機(jī))對所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機(jī)支付儼然成為新寵.某金融機(jī)構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個(gè)人,把這100個(gè)人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.
組數(shù) | 第l組 | 第2組 | 第3組 | 第4組 | 第5組 |
分組 | |||||
頻數(shù) | 20 | 36 | 30 | 10 | 4 |
(1)求;
(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):
(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體中,側(cè)面對角線,上分別有一點(diǎn)E,F,且,則直線EF與平面ABCD所成的角的大小為( )
A.0°B.60°C.45°D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年春季,世界各地相繼出現(xiàn)流感疫情,這已經(jīng)成為全球性的公共衛(wèi)生問題.為了考察某種流感疫苗的效果,某實(shí)驗(yàn)室隨機(jī)抽取100只健康小鼠進(jìn)行試驗(yàn),得到如下列聯(lián)表:
感染 | 未感染 | 總計(jì) | |
注射 | 10 | 40 | 50 |
未注射 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
參照附表,在犯錯誤的概率最多不超過__________的前提下,可認(rèn)為“注射疫苗”與“感染流感”有關(guān)系.
(參考公式:.)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)人下半身長(肚臍至足底)與全身長的比近似為(,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計(jì)師的你,對TA的著裝建議是( )
A.身材完美,無需改善B.可以戴一頂合適高度的帽子
C.可以穿一雙合適高度的增高鞋D.同時(shí)穿戴同樣高度的增高鞋與帽子
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時(shí)的速度沿直線向海島移動,同時(shí)物體乙從海島沿著海島北偏西方向以海里/小時(shí)的速度移動.
(1)問經(jīng)過多長時(shí)間,物體甲在物體乙的正東方向;
(2)求甲從海島到達(dá)海島的過程中,甲、乙兩物體的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面,為矩形,分別為的中點(diǎn),.
(1)求證:平面;
(2)求證:面平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于與有表格中的數(shù)據(jù),且與線性相關(guān),由最小二乘法得.
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求與的線性回歸方程;
(2)現(xiàn)有第二個(gè)線性模型:,且.若與(1)的線性模型比較,哪一個(gè)線性模型擬合效果比較好,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com