已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱(chēng)橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過(guò)點(diǎn)F2、P的直線(xiàn)l,使l與y軸的交點(diǎn)R滿(mǎn)足
RP
=-3
PF2
?若存在,求直線(xiàn)l的斜率k;若不存在,請(qǐng)說(shuō)明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過(guò)焦點(diǎn)F1、F2.試寫(xiě)出“黃金雙曲線(xiàn)”的定義;對(duì)于上述命題,在黃金雙曲線(xiàn)中寫(xiě)出相關(guān)的真命題,并加以證明.
分析:(1)由
c
a
=
5
-1
2
及b2=a2-c2,求得b與ac的關(guān)系,根據(jù)等比中項(xiàng)的性質(zhì)可推斷a、b、c成等比數(shù)列.
(2)設(shè)直線(xiàn)l的方程為y=k(x-c),進(jìn)而可表示出R的坐標(biāo)根據(jù)及
RP
=-3
PF2
,進(jìn)而表示出P的坐標(biāo),把P點(diǎn)代入橢圓的方程整理后可解得k存在,求出k.
(3)根據(jù)“黃金雙曲線(xiàn)”的定義寫(xiě)出真命題.依題意可知直線(xiàn)EF2的方程為bx+cy-bc=0,再根據(jù)點(diǎn)到直線(xiàn)的距離化簡(jiǎn)后求得d=a,進(jìn)而可知
直線(xiàn)EF2與圓x2+y2=a2相切,同理可證直線(xiàn)EF1、DF1、DF2均與圓x2+y2=a2相切,命題得證.
解答:解:(1)證明:由
c
a
=
5
-1
2
及b2=a2-c2,得b2=a2-c2=a2-(
5
-1
2
a)2=
5
-1
2
a2
=ac,
故a、b、c成等比數(shù)列.
(2)解:由題設(shè),顯然直線(xiàn)l垂直于x軸時(shí)不合題意,設(shè)直線(xiàn)l的方程為y=k(x-c),
得R(0,-kc),又F2(c,0),及
RP
=-3
PF2
,
得點(diǎn)P的坐標(biāo)為(
3c
2
kc
2
)
,
因?yàn)辄c(diǎn)P在橢圓上,
所以
(
3c
2
)
2
a2
+
(
kc
2
)
2
b2
=1
,
又b2=ac,得
9
4
(
c
a
)2+
k2
4
c
a
=1
,k2=
13-5
5
2
>0
,
故存在滿(mǎn)足題意的直線(xiàn)l,其斜率k=±
13-5
5
2

(3)在黃金雙曲線(xiàn)中有真命題:已知黃金雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1
的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以F1(-c,0)、F2(c,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形F1DF2E的內(nèi)切圓過(guò)頂點(diǎn)A(-a,0)、B(a,0).
證明:直線(xiàn)EF2的方程為bx+cy-bc=0,原點(diǎn)到該直線(xiàn)的距離為d=
bc
b2+c2
,
將b2=ac代入,得d=
c
ac
ac+c2
=
c
a
a+c
,又將c=
5
+1
2
a
代入,
化簡(jiǎn)得d=a,
故直線(xiàn)EF2與圓x2+y2=a2相切,
同理可證直線(xiàn)EF1、DF1、DF2均與圓x2+y2=a2相切,
即以A(-a,0)、B(a,0)為直徑的圓x2+y2=a2為菱形F1DF2E的內(nèi)切圓,命題得證.
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線(xiàn)y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿(mǎn)足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線(xiàn)AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線(xiàn)l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線(xiàn)l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線(xiàn)l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線(xiàn)l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線(xiàn)x=2的垂線(xiàn)AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線(xiàn)l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案