利用計(jì)算機(jī)產(chǎn)生1到6之間取整數(shù)值的隨機(jī)數(shù)a和b,在a+b為偶數(shù)的條件下,|a-b|>2發(fā)生的概率是
 
考點(diǎn):條件概率與獨(dú)立事件
專題:概率與統(tǒng)計(jì)
分析:先得到在1到6之間取整數(shù)值的隨機(jī)數(shù)a和b的所有情況,利用隨機(jī)事件的概率公式,分別求出事件“a+b為偶數(shù)”的概率與事件“a+b為偶數(shù)的條件下,|a-b|>2發(fā)生”的概率,再用條件概率公式加以計(jì)算,可得所求值.
解答: 解:由題意得,利用計(jì)算機(jī)產(chǎn)生1到6之間取整數(shù)值的隨機(jī)數(shù)a和b,基本事件的總個(gè)數(shù)是6×6=36,即(a,b)的情況有36種,
事件“a+b為偶數(shù)”包含基本事件:
(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),
(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)
(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18個(gè),
“在a+b為偶數(shù)的條件下,|a-b|>2”包含基本事件:
(1,5),(2,6),(5,1),(6,2)共4個(gè),
故在a+b為偶數(shù)的條件下,|a-b|>2發(fā)生的概率是P=
4
36
18
36
=
2
9

故答案為:
2
9
點(diǎn)評(píng):本題主要考查概率的計(jì)算,以條件概率為載體,考查條件概率的計(jì)算,解題的關(guān)鍵是判斷概率的類型,從而利用相應(yīng)公式,分別求出對(duì)應(yīng)的測(cè)度是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1的左右焦點(diǎn)為F1,F(xiàn)2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成5:3兩段,則雙曲線的離心率為( 。
A、
4
3
B、
2
3
3
C、
10
3
D、
10
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若已知(2x-1)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,則a0+3a1+5a2+7a3+9a4+11a5的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=f(x)=2x3過點(diǎn)(2
3
,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將“函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1在區(qū)間[-1,1]上至少存在一個(gè)實(shí)數(shù)c,使f(c)>0”反設(shè),所得命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:12+22+32+…+n2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中為真命題的是( 。
A、若x≠0,則x+
1
x
≥2
B、命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1
C、“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
D、若命題P:?x∈R,x2-x+1<0,則¬P:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是△ABC的三邊中垂線的交點(diǎn),a,b,c分別為角A,B,C對(duì)應(yīng)的邊,已知b2-2b+c2=0,則
BC
AO
的范圍是( 。
A、[0,+∞)
B、[0,2)
C、[-
1
4
,+∞)
D、[-
1
4
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-f′(-1)x2-x,則f′(1)等于( 。
A、
2
3
B、-
2
3
C、6
D、-6

查看答案和解析>>

同步練習(xí)冊(cè)答案