設(shè)x0是方程9-x=2x的解,且x0∈(k,k+1)(k∈Z),則k=
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得2x0+x0-9=0.令f(x)=2x+x-9=0,由f(2)<0,f(3)>0,可得x0∈(2,3).可得k的值.
解答: 解:∵x0為方程9-x=2x的解,∴2x0+x0-9=0.
令f(x)=2x+x-9=0,∵f(2)=-3<0,f(3)=2>0,∴x0∈(2,3).
再根據(jù)x0∈(k,k+1)(k∈Z),可得k=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)與方程的根的關(guān)系,函數(shù)零點(diǎn)的判定定理,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x≤1,則y=
x2-5x+5
x-1
有( 。
A、最大值5B、最小值1
C、最大值-5D、最小值-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

編寫程序求1~1000的所有不能被3整除的整數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為橢圓
x2
9
+
y2
8
=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是焦點(diǎn),若PF1⊥PF2,則△PF1F2的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

軸截面為正三角形的圓錐內(nèi)有一個(gè)內(nèi)切球,若圓錐的底面半徑為2,求球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1幾何證明選講
已知四邊形ACBE,AB交CE于D點(diǎn),∠BCE=∠ACE,BE2=DE-EC.
(Ⅰ)求證:△EBD∽△ACD;
(Ⅱ)求證:A、E、B、C四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*,都有an>0,并且有Sn=
a13+a23+a33+…+an3

(1)求a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)數(shù)列{bn},其中 bn=
1
an2
,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an},a1=1,an=
1
2
an-1-
1
2n
(n≥2,n∈N*
(1)求證:數(shù)列{2nan}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“任意能被2整除的整數(shù)都是偶數(shù)”的否定是( 。
A、存在一個(gè)能被2整除的數(shù)不是偶數(shù)
B、所有能被2整除的整數(shù)都不是偶數(shù)
C、存在一個(gè)不能被2整除的數(shù)是偶數(shù)
D、所有不能被2整除的數(shù)都是偶數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案