18.在三行三列的方陣$(\begin{array}{l}{a_{11}}{a_{12}}{a_{13}}\\{a_{21}}{a_{22}}{a_{23}}\\{a_{31}}{a_{32}}{a_{33}}\end{array})$中有9個數(shù)aij(i=1,2,3;j=1,2,3),從中任取三個數(shù),則三個數(shù)中任兩個不同行不同列的概率是$\frac{1}{14}$.(結(jié)果用分數(shù)表示)

分析 可得總的選法為84種,列舉可得符合題意的共6個,由概率公式可得.

解答 解:從9個數(shù)中任選3個共${C}_{9}^{3}$=84種選法,
其中三個數(shù)中任兩個不同行不同列的為:
(a11,a22,a33),(a11,a23,a32),
(a12,a21,a33),(a12,a23,a31),
(a13,a22,a31),(a11,a21,a32)共6個,
∴所求概率P=$\frac{6}{84}$=$\frac{1}{14}$
故答案為:$\frac{1}{14}$

點評 本題考查古典概型及其概率公式,涉及列舉法的應(yīng)用,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={-1,0,1,2,3},N={-2,0},則下列結(jié)論正確的是( 。
A.N⊆MB.M∩N=NC.M∪N=MD.M∩N={0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a,b∈R,則“a2+b2≤1”是“ab≤$\frac{1}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點分別為F1、F2,點P(a,b)滿足|F1F2|=|PF2|,設(shè)直線PF2與橢圓交于M、N兩點,若|MN|=16,則橢圓的方程為( 。
A.$\frac{x^2}{144}+\frac{y^2}{108}=1$B.$\frac{x^2}{100}+\frac{y^2}{75}=1$C.$\frac{x^2}{36}+\frac{y^2}{27}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$+1
(1)當a=$\frac{1}{4}$時,求函數(shù)y=f(x)的極值;
(2)當$a∈(\frac{1}{3},1)$時,若對任意實數(shù)b∈[2,3],當x∈(0,b]時,函數(shù)f(x)的最小值為f(b),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sin$\frac{x}{3}cos\frac{x}{3}+\sqrt{3}{cos^2}\frac{x}{3}$.
(1)將f(x)寫成Asin(ωx+φ)+h(A>0)的形式,并求其圖象對稱中心的橫坐標;
(2)若函數(shù)f(x)的定義域為$D=(0,\frac{π}{3})$,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知2a=b+c,sin2A=sinC•sinB,判斷三角形形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y∈R,i為虛數(shù)單位,且yi-x=-1+i,則(1-i)x+y的值為( 。
A.2B.-2iC.-4D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題${P}:Ex∈[-\frac{π}{6},\frac{π}{4}],2sin(2x+\frac{π}{6})-m=0$,命題q:Ex∈(0,+∞),x2-2mx+1<0,若 P∧(?q)為真命題,則實數(shù)犿的取值范圍為( 。
A.[-2,1]B.[-1,1]C.[-1,1)D.(0,2]

查看答案和解析>>

同步練習(xí)冊答案