4.設(shè)等比數(shù)列{an}的前n項和Sn,已知${a_3}=\frac{1}{8}$,且${S_2}+\frac{1}{16},{S_3},{S_4}$成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}={a_n}{log_{\frac{1}{2}}}{a_n}$,求數(shù)列{bn}的前n項和Tn

分析 (I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出.
(II)利用“錯位相減法”、等比數(shù)列的前n項和公式即可得出.

解答 解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q,
∵${S_2}+\frac{1}{16},{S_3},{S_4}$成等差數(shù)列,
∴$2{S_3}={S_2}+\frac{1}{16}+{S_4}$,即:${a_3}={a_4}+\frac{1}{16}$,
∵${a_3}=\frac{1}{8}$,∴${a_4}=\frac{1}{16}$,
∴$q=\frac{a_4}{a_3}=\frac{1}{2}$,${a_1}=\frac{a_3}{q^2}=\frac{1}{2}$,
∴${a_n}=\frac{1}{2}×{(\frac{1}{2})^{n-1}}={(\frac{1}{2})^n}$.
(Ⅱ)${b_n}={a_n}{log_{\frac{1}{2}}}{a_n}=n{(\frac{1}{2})^n}$
∴${T_n}=1×\frac{1}{2}+2×\frac{1}{2^2}+3×\frac{1}{2^3}+…+n•\frac{1}{2^n}$,
$\frac{1}{2}{T_n}=1×\frac{1}{2^2}+2×\frac{1}{2^3}+3×\frac{1}{2^4}+…+n•\frac{1}{{{2^{n+1}}}}$,
兩式相減得:$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+…+\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}=1-\frac{n+2}{{{2^{n+1}}}}$,
∴${T_n}=2-\frac{n+2}{2^n}$.

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知頂點在原點,對稱軸為x軸的拋物線,焦點F在直線2x+3y-4=0上.求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,a=9,b=3$\sqrt{3}$; A=120°,則sin(π-B)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|-1≤x≤1},B={x|x>0},則A∩(∁RB)=( 。
A.{x|-1≤x≤0}B.{x|-1≤x<0}C.{x|-1≤x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=|2x-1|,實數(shù)a<b,且f(a)=f(b),則a+b的取值范圍是( 。
A.(0,1)B.(-∞,0)C.(0,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知菱形ABCD中,∠DAB=60°,點G是正△PAD的邊AD的中
,平面PAD⊥平面ABCD.
求證:(1)BG⊥平面PAD;
(2)AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓錐的底面半徑為1,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為$\frac{\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點坐標(biāo)為(a-$\frac{2}$,0),則橢圓的離心率e=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知M為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一動點,過M作橢圓的切線為l,過橢圓的右焦點F1作l的垂線,垂足為D,求D點的軌跡方程為x2+y2=25.

查看答案和解析>>

同步練習(xí)冊答案