【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖,圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃,下面敘述不正確的是( 。

A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個(gè)

【答案】D
【解析】解:A.由雷達(dá)圖知各月的平均最低氣溫都在0℃以上,正確
B.七月的平均溫差大約在10°左右,一月的平均溫差在5°左右,故七月的平均溫差比一月的平均溫差大,正確
C.三月和十一月的平均最高氣溫基本相同,都為10°,正確
D.平均最高氣溫高于20℃的月份有7,8兩個(gè)月,故D錯(cuò)誤,
故選:D
根據(jù)平均最高氣溫和平均最低氣溫的雷達(dá)圖進(jìn)行推理判斷即可.;本題主要考查推理和證明的應(yīng)用,根據(jù)平均最高氣溫和平均最低氣溫的雷達(dá)圖,利用圖象法進(jìn)行判斷是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1證明 , , 不可能成等差數(shù)列;

2證明: , 不可能為同一等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)當(dāng)有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10


(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.求P(A)的估計(jì)值;
(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”.求P(B)的估計(jì)值;
(3)求續(xù)保人本年度的平均保費(fèi)估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.

(1)判斷f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函數(shù)”,哪些不是,并說明理由;

(2)若函數(shù)g(x)=lnx(x∈[M,+∞))是“保三角形函數(shù)”,求M的最小值;

(3)若函數(shù)h(x)=sinx(x∈(0,A))是“保三角形函數(shù)”,求A的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知點(diǎn)為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問:在軸上是否存在定點(diǎn),使得為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國(guó)2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
注:年份代碼1﹣7分別對(duì)應(yīng)年份2008﹣2014.
(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以證明;
(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無害化處理量.
附注:
參考數(shù)據(jù): yi=9.32, tiyi=40.17, =0.55, ≈2.646.
參考公式: ,回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.

(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實(shí)數(shù)對(duì);

(2)已知函數(shù).函數(shù)是“型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì),當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ln(+mx)(mR).

(Ⅰ)是否存在實(shí)數(shù)m,使得函數(shù)fx)為奇函數(shù),若存在求出m的值,若不存在,說明理由;

(Ⅱ)若m為正整數(shù),當(dāng)x>0時(shí),fx)>lnx++,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案