已知拋物線y2=2px(p>0).過動點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.

(Ⅰ)求a的取值范圍;

(Ⅱ)若線段AB的垂直平分線交x軸于點(diǎn)N,求Rt△NAB面積的最大值.

答案:
解析:

  解析:(Ⅰ)直線的方程為,將,

  得.設(shè)直線與拋物線兩個不同交點(diǎn)的坐標(biāo)為、

  則,

  ∴

  ∵,∴.解得

  (Ⅱ)設(shè)AB的垂直平分線交AB于點(diǎn)Q,令坐標(biāo)為,則由中點(diǎn)坐標(biāo)公式,得

  

  ∴.又為等腰直角三角形,

  ∴,∴

  即面積最大值為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:022

在直角坐標(biāo)系xoy中,已知拋物線y2=2px(p>0),過點(diǎn)(2p,0)作直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),給出下列結(jié)論:(1)OA⊥OB(2)△AOB的最小面積是4p2(3)x1x2=-4p2其中正確的結(jié)論是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知拋物線y2=2pxp>0).過動點(diǎn)Ma,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.

(Ⅰ)求a的取值范圍;

(Ⅱ)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:044

已知拋物線y2=2px(p>0),過動點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,①若|AB|≤2p,求a的取值范圍;②若線段AB的垂直平分線交AB于點(diǎn)Q,交x軸于點(diǎn)N,求直角三角形MNQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課程高中數(shù)學(xué)疑難全解 題型:044

如圖所示,已知拋物線y2=2px(p>0),過動點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,且|AB|≤2p.

(1)求a的取值范圍;

(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶八中2009屆高三下學(xué)期第二次月考數(shù)學(xué)理科試題 題型:044

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l

(Ⅰ)求拋物線上任意一點(diǎn)Q到定點(diǎn)N(2p,0)的最近距離;

(Ⅱ)過點(diǎn)F作一直線與拋物線相交于A、B兩點(diǎn),并在準(zhǔn)線l上任取一點(diǎn)M,當(dāng)M不在x軸上時,證明:是一個定值,并求出這個值.

查看答案和解析>>

同步練習(xí)冊答案