函數(shù)f(x)。▁-a)2,(x+a)2,(x-2)2中的較大函數(shù)的值,其中a為非負(fù)實(shí)數(shù),f(x)的最小值為g(a),則g(a)的最小值為
1
1
分析:由題設(shè)條件推導(dǎo)出g(a)=
(a+2)2
4
,0≤a<2
a2,a≥2
.由此能求出a=0時(shí),g(a)min=
(0+2)2
4
=1.
解答:解:①當(dāng)0≤a<2時(shí),(x+a)2=(x-2)2,得x=
2-a
2

x<
2-a
2
時(shí),f(x)=(x-2)2
x≥
2-a
2
2時(shí),f(x)=(x+a)2,
∴f(x)最小值f(
2-a
2
)=
(a+2)2
4

②當(dāng)a=2時(shí),(x+2)2=(x-2)2,得x=0.
當(dāng)x<0時(shí),f(x)=(x-2)2
當(dāng)x≥0時(shí),f(x)=(x+2)2,
f(x)最小值為f(0)=4.
③當(dāng)a>2時(shí),(x+a)2=(x-a)2,得x=0.
當(dāng)x<0時(shí),f(x)=(x-a)2,
當(dāng)x≥0時(shí),f(x)=(x+a)2,
f(x)最小值為f(0)=a2
∴g(a)=
(a+2)2
4
,0≤a<2
a2,a≥2

∴a=0時(shí),g(a)min=
(0+2)2
4
=1.
故答案為:1.
點(diǎn)評:本題考查函數(shù)的最小值的求法,解題時(shí)要認(rèn)真審題,注意分類討論思想和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的單調(diào)區(qū)間;(簡單說明理由,不必嚴(yán)格證明)
(2)證明g(x)的最小值為g(
2
2
);
(3)設(shè)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
π
2
],則f1(x)=-1,x∈[-
π
2
,
π
2
],f2(x)=sinx,x∈[-
π
2
,
π
2
],設(shè)φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的減函數(shù)f(x),其圖象過點(diǎn)M(-3,1)和N(1,-1),則滿足|f(x+1)|<1的x的取值范圍是( 。
A、-1<x<1B、-4<x<0C、x<-1或x>1D、x<-4或x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案