【題目】下列四個命題中,真命題是(  )

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,是異面直線,則是異面直線

【答案】B

【解析】

逐一分析選項,A.和兩條異面直線相交的兩條直線也可以是相交直線;

B.A直接判斷;

C.異面直線的公垂線是既垂直又相交;

D.也有可能是平行線或相交線.

A中和兩條異面直線都相交的兩條直線可以是異面直線,也可以是相交直線,交于某直線的同一點,故錯誤;

B中和兩條異面直線都相交于不同點的兩條直線是異面直線是正確的;

C中和兩條異面直線都垂直且相交的直線是異面直線的公垂線,故錯誤;

D中若、是異面直線,、是是異面直線,則、是異面直線,也可以是平行線,或相交線,故錯誤.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某健身館在20197、8兩月推出優(yōu)惠項目吸引了一批客戶.為預估20207、8兩月客戶投入的健身消費金額,健身館隨機抽樣統(tǒng)計了20197、8兩月100名客戶的消費金額,分組如下:,,,,(單位:元),得到如圖所示的頻率分布直方圖:

1)請用抽樣的數(shù)據(jù)預估20207、8兩月健身客戶人均消費的金額(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)若把20197、8兩月健身消費金額不低于800元的客戶,稱為健身達人,經(jīng)數(shù)據(jù)處理,現(xiàn)在列聯(lián)表中得到一定的相關數(shù)據(jù),請補全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認為健身達人與性別有關?

健身達人

非健身達人

總計

10

30

總計

3)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.

方案一:每滿800元可立減100元;

方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7.

若某人打算購買1000元的營養(yǎng)品,請從實際付款金額的數(shù)學期望的角度分析應該選擇哪種優(yōu)惠方案.

附:

0.150

0.100

0.050

0.010

0.005

2.072

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當0≤x≤200時,求函數(shù)vx)的表達式;

2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽,經(jīng)過初賽、復賽,甲、乙兩個代表隊(每隊人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得分,答錯得分,假設甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響,用表示乙隊的總得分.

(1)求的分布列;

(2)求甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業(yè)下列說法錯誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.是異面直線,是異面直線,則是異面直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是雙曲線上的兩點,線段的中點為,直線不經(jīng)過坐標原點

1)若直線和直線的斜率都存在且分別為,求證:;

2)若雙曲線的焦點分別為,點的坐標為,直線的斜率為,求由四點、、所圍成四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,函數(shù),記.把函數(shù)的最大值稱為函數(shù)線性擬合度”.

1)設函數(shù),,求此時函數(shù)線性擬合度

2)若函數(shù),的值域為),,求證:;

3)設,,求的值,使得函數(shù)線性擬合度最小,并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E:過點(0,1)且離心率.

()求橢圓E的方程;

()設動直線l與兩定直線l1:xy=0l2:x+y=0分別交于P,Q兩點.若直線l總與橢圓E有且只有一個公共點,試探究:OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案