若sinα=2cosα,則
1
sin2α
的值等于( 。
A、
4
5
B、
5
4
C、-
4
5
D、-
5
4
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由條件同角三角函數(shù)的基本關(guān)系,二倍角的正弦公式,化簡(jiǎn)要求的式子,可得結(jié)果.
解答: 解:∵sinα=2cosα,∴tanα=2,
1
sin2α
=
sin2α+cos2α
2sinαcosα
=
tan2α+1
2tanα
=
4+1
4
=
5
4
,
故選:B.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(1-3x)的值域?yàn)椋ā 。?/div>
A、(0,+∞)
B、[0,+∞)
C、(-∞,0)
D、[-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)和y=g(x)的圖象如圖1、圖2所示,則不等式
f(x)
g(x)
≥0的解集是( 。
A、(-1,1]∪(2,3]
B、(-1,1)∪(2,3)
C、(2,3]∪(4,+∞)
D、(-1,1]∪(2,3]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
πa3
6
B、
πa3
3
C、
a3
3
D、πa3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”.
②命題 p:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0
③若p∨q為真命題,則p,q均為真命題.
④“x>2”是“x2-3x+2>0”的充分不必要條件.
其中不正確的個(gè)數(shù)有(  )
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|lgx<0},N={x|x2≤4},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù)
  x3456
  y    2.5344.5
用最小二乘法求線性同歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
.
x

(Ⅰ)請(qǐng)畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)圖表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(Ⅲ)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?(參考數(shù)值:3×2.5+4×3+4×5+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)a=5,c=4,焦點(diǎn)在x軸上的橢圓;
(2)a=2
5
,經(jīng)過點(diǎn)A(2,-5),焦點(diǎn)在y軸上的雙曲線.
(3)頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,曲線上一點(diǎn)M(m,-3)到焦點(diǎn)的距離為5的拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,S3=9,a6=11.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}中,b1=a1,b2=a2,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案