15.下列四個圖中,函數(shù)y=$\frac{ln|x+1|}{x+1}$的圖象可能是( 。
A.B.C.D.

分析 構(gòu)造函數(shù)y=$\frac{ln|x|}{x}$,則函數(shù)為奇函數(shù),其則圖象關(guān)于原點對稱,根據(jù)圖象得平移即可得到答案.

解答 解:設(shè)y=$\frac{ln|x|}{x}$,則函數(shù)為奇函數(shù),其則圖象關(guān)于原點對稱,
當(dāng)x>1時,y>0,當(dāng)0<x<1時,
y<0,
而y=$\frac{ln|x+1|}{x+1}$的圖象是由
y=$\frac{ln|x|}{x}$的圖象向左平移一個單位得到的,
故選:C

點評 本題考查了函數(shù)圖象的變化,關(guān)鍵是掌握函數(shù)的平移,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)z=3x+4y,式中變量x,y滿足下列條件:$\left\{\begin{array}{l}{x+2y≤12}\\{2x+y≤16}\\{-x+2y≤0}\\{x≥0,y≥0}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$0<x<\frac{π}{2}$,$sin({x-\frac{π}{6}})=\frac{1}{3}$,則$cos({x-\frac{π}{6}})$=$\frac{2\sqrt{2}}{3}$,cosx=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若全集U={0,1,2,3,4,5,6},A={1,3},B={3,5},則∁U(A∪B)=( 。
A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.i是虛數(shù)單位,i+i2+i3+…+i2017=(  )
A.1B.iC.i2D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程是$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}\right.(t為參數(shù),0≤α<π)$,射線$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$與曲線C1交于極點O外的三點A,B,C.
(1)求$\frac{|OB|+|OC|}{|OA|}$的值;
(2)當(dāng)$ϕ=\frac{π}{12}$時,B,C兩點在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且a2-(b-c)2=bc,cosAcosB=$\frac{sinA+cosC}{2}$.
(1)求角A和角B的大。
(2)若f(x)=sin(2x+C),將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個單位后又向上平移了2個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的解析式及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.過橢圓$\frac{{y}^{2}}{4}$+x2=1的上焦點F2作一條斜率為-2的直線與橢圓交于A,B兩點,O為坐標(biāo)原點,則△AOB的面積為$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=$\frac{sinx}{x}$的導(dǎo)數(shù)為$\frac{xcosx-sinx}{{x}^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案