【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn).

(1)求線段的長度;

(2) 為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若,求的值.

【答案】(1)9(2)λ=0或λ=2.

【解析】試題分析:第一問求拋物線的焦點(diǎn)弦長問題可直接利用焦半徑公式,先寫出直線的方程,再與拋物線的方程聯(lián)立方程組,設(shè)而不求,利用根與系數(shù)關(guān)系得出,然后利用焦半徑公式得出焦點(diǎn)弦長公式,求出弦長,第二問根據(jù)聯(lián)立方程組解出的A、B兩點(diǎn)坐標(biāo),和向量的坐標(biāo)關(guān)系表示出點(diǎn)C的坐標(biāo),由于點(diǎn)C在拋物線上滿足拋物線方程,求出參數(shù)值.

試題解析:

(1)直線AB的方程是y=2(x-2),與y2=8x聯(lián)立,消去yx2-5x4=0,

由根與系數(shù)的關(guān)系得x1x25.由拋物線定義得|AB|=x1x2p=9,

(2)由x2-5x+4=0,得x1=1,x2=4,從而A(1,-2),B(4,4).

設(shè)=(x3y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),

y=8x3,即[2 (2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,

解得λ=0或λ=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時(shí)的解析式為f(x)=﹣x2+4x﹣3.
(1)求這個(gè)函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,過任作一條與兩條坐標(biāo)軸都不垂直的直線,與橢圓交于兩點(diǎn),且的周長為8,當(dāng)直線的斜率為時(shí), 軸垂直.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在定點(diǎn),總能使平分?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+
(1)判斷f(x)的奇偶性并說明理由;
(2)當(dāng)a=16時(shí),判斷f(x)在x∈(0,2]上的單調(diào)性并用定義證明;
(3)試判斷方程x3﹣2016x+16=0在區(qū)間(0,+∞)上解的個(gè)數(shù)并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=cos(2x+ ),x∈R的圖象,只需把函數(shù)y=cos2x的圖象(
A.向左平行移動 個(gè)單位長度
B.向左平行移動 個(gè)單位長度
C.向右平行移動 個(gè)單位長度
D.向右平行移動 個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 在同一平面內(nèi),且
(1)若 ,且 ,求m的值;
(2)若| |=3,且 ,求向量 的夾角.

查看答案和解析>>

同步練習(xí)冊答案