【題目】已知是兩個不重合的平面,下列選項中,一定能得出平面與平面平行的是( )

A.平面內(nèi)有一條直線與平面平行

B.平面內(nèi)有兩條直線與平面平行

C.平面內(nèi)有一條直線與平面內(nèi)的一條直線平行

D.平面與平面不相交

【答案】D

【解析】

運用面面平行的判定定理和面面的位置關(guān)系等知識對四個選項進行判定.

對于,由面面平行的判定定理:在一個平面內(nèi)有兩條相交直線與另一個平面平行,則這兩個平面平行,所以平面內(nèi)有一條直線與平面平行不能得出平面與平面平行,同時兩個平面可能相交,故排除.

對于,由面面平行的判定定理:在一個平面內(nèi)有兩條相交直線與另一個平面平行,則這兩個平面平行, 選項中平面內(nèi)有兩條直線與平面平行,不是兩條相交直線,而兩條直線有可能是平行線,這樣兩個面相交時也存在這種情況,所以選項不正確,故排除.

對于,由面面平行的判定定理:在一個平面內(nèi)有兩條相交直線與另一個平面平行,則這兩個平面平行,選項中只有一條直線,故錯誤,同時當這兩個面相交時也可能存在一條線與另一個平面內(nèi)的一條線平行,故排除.

對于,平面與平面不相交可以得出平面與平面平行,因為兩個平面(不重合)的位置關(guān)系只有相交與平行兩種,又因為兩個平面不相交,所以這兩個平面必定平行,所以選項正確.

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)若函數(shù)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;

(Ⅲ)設(shè)()是函數(shù)的兩個極值點,若,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)試問在線段上是否存在一點,使銳二面角的余弦值為.若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點共面,且平面平面

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)在等腰直角三角形中,,將沿中位線翻折得到如圖(2)所示的空間圖形,使二面角的大小為.

1)求證:平面平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個盒子中,放有標號分別為1,23的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標號分別為x、y,設(shè)O為坐標原點,點P的坐標為.

1)求隨機變量的最大值,并求事件取得最大值的概率;

2)求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;

)若,使)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的有(

①在回歸分析中,可以借助散點圖判斷兩個變量是否呈線性相關(guān)關(guān)系.

②在回歸分析中,可以通過殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.

③在回歸分析模型中,相關(guān)系數(shù)的絕對值越大,說明模型的擬合效果越好.

④在回歸直線方程中,當解釋變量每增加1個單位時,預報變量增加0.1個單位.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓C的標準方程;

2)點P是橢圓上異于短軸端點AB的任意一點,過點P軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設(shè)O為坐標原點,試判斷以OD為直徑的圓與點M的位置關(guān)系.

查看答案和解析>>

同步練習冊答案