考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由對數(shù)運算法則原式等價轉(zhuǎn)化為2g5+lg2(lg50+lg2),由此能求出lg25+lg2•lg50+(lg2)
2的值.
(2)由對數(shù)運算法則,把原式等價轉(zhuǎn)化為=-
,由此能求出結(jié)果.
(3)由換底公式把(log
32+log
92)•(log
43+log
83)等價轉(zhuǎn)化為(log
94+log
92)(log
6427+log
649),再由對數(shù)運算法則能求出結(jié)果.
解答:
解:(1)lg25+lg2•lg50+(lg2)
2=2g5+lg2(lg50+lg2)
=2lg5+2lg2
=2.
(2)
=
•[(lg3-1)+3lg2] |
lg0.3•lg1.2 |
=-
=-
=-
.
(3)(log
32+log
92)•(log
43+log
83)
=(log
94+log
92)(log
6427+log
649)
=log
98•log
64243
=
×=
.
點評:本題考查對數(shù)運算法則和換底公式的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,仔細解答.