【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,,,分別為線段的中點,為線段上任意一點.

(1)證明:平面.

(2)若,證明:平面平面.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)由題可得,進而可得平面,因為,所以四邊形為平行四邊形,即,從而得出平面,平面平面,進而證得平面

(2)由題可先證明四邊形為正方形,連接,則,再證得平面,進而證得平面平面.

證明:(1)因為平面,平面,

所以.

因為平面平面,

所以平面.

因為,,

所以四邊形為平行四邊形,

所以.

因為平面,平面,

所以平面.

因為,

所以平面平面,

因為平面

所以平面.

(2)因為,所以為等腰直角三角形,

.

因為的中點,且四邊形為平行四邊形,

所以,

故四邊形為正方形.

連接,則.

因為平面,平面,

所以.

因為平面,平面,

所以平面.

因為分別的中點,

所以,則平面.

因為平面,

所以平面平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生的學(xué)習(xí)情況,某學(xué)校在一次考試中隨機抽取了20名學(xué)生的成績,分成[50,60),[60,70),[70,80),[80,90),[90,100]五組,繪制了如圖所示頻率分布直方圖.求:

(Ⅰ)圖中m的值;

(II)估計全年級本次考試的平均分;

(III)若從樣本中隨機抽取分數(shù)在[80,100]的學(xué)生兩名,求所抽取兩人至少有一人分數(shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知符號函數(shù)sgnx= ,f(x)是R上的增函數(shù),g(x)=f(x)﹣f(ax)(a>1),則(
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:①函數(shù)的值域是;

②為了得到函數(shù)的圖象,只需把函數(shù)圖象上的所有點向右平移個單位長度;

③當時,冪函數(shù)的圖象都是一條直線;

④已知函數(shù),若互不相等,且,則的取值范圍是.

其中正確的命題個數(shù)為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2xx∈R.

(1)當m取何值時,方程|f(x)-2|=m有一個解?兩個解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個五個命題:

①“”是“”的充要條件

②對于命題,使得,則,均有

③命題“若,則方程有實數(shù)根”的逆否命題為:“若方程

沒有實數(shù)根,則”;

④函數(shù)只有個零點;

使是冪函數(shù),且在上單調(diào)遞減.

其中是真命題的個數(shù)為:

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)響應(yīng)省政府號召,對現(xiàn)有設(shè)備進行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖是設(shè)備改造前的樣本的頻率分布直方圖,表是設(shè)備改造后的樣本的頻數(shù)分布表.

表:設(shè)備改造后樣本的頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

(1)完成下面的列聯(lián)表,并判斷是否有的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設(shè)備改造有關(guān);

設(shè)備改造前

設(shè)備改造后

合計

合格品

不合格品

合計

(2)根據(jù)頻率分布直方圖和表 提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設(shè)備的優(yōu)劣進行比較;

(3)企業(yè)將不合格品全部銷毀后,根據(jù)客戶需求對合格品進行登記細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件售價元;質(zhì)量指標值落在內(nèi)的定為二等品,每件售價元;其它的合格品定為三等品,每件售價.根據(jù)表的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設(shè)其支付的費用為(單位:元),求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個結(jié)論:

①從1,2,3,4,5中任取2個不同的數(shù),事件“取到的2個數(shù)之和為偶數(shù)”,事件“取到的

2個數(shù)均為偶數(shù)”,則

②某班共有45名學(xué)生,其中30名男同學(xué),15名女同學(xué),老師隨機抽查了5名同學(xué)的作業(yè),用表示抽查到的女生的人數(shù),則;

③設(shè)隨機變量服從正態(tài)分布,則;

④由直線,曲線軸所圍成的圖形的面積是.

其中所有正確結(jié)論的序號為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為是橢圓上一點.

(1)求橢圓的標準方程;

(2)過橢圓右焦點的直線與橢圓交于兩點,是直線上任意一點.

證明:直線的斜率成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案