先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a, b.
(1)求直線ax+by+5=0與圓 相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
(1)  (2)

試題分析:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是
即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}
∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.
∴直線ax+by+c=0與圓x2+y2=1相切的概率是
(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
∵三角形的一邊長為5∴當(dāng)a=1時,b=5,(1,5,5)  1種 
當(dāng)a=2時,b=5,(2,5,5)                  1種
當(dāng)a=3時,b=3,5,(3,3,5),(3,5,5)    2種  
當(dāng)a=4時,b=4,5,(4,4,5),(4,5,5)    2種 
當(dāng)a=5時,b=1,2,3,4,5,6,(5,1,5),(5, 2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5)    6種
當(dāng)a=6時,b=5,6,(6,5,5),(6,6,5)  2種 
故滿足條件的不同情況共有14種答:三條線段能圍成不同的等腰三角形的概率為
點評:古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關(guān)系是解決問題的關(guān)鍵.解決問題的步驟是:計算滿足條件的基本事件個數(shù),及基本事件的總個數(shù),然后代入古典概型計算公式進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4。
(Ⅰ)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為,求+2的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中有3個白球2個黑球共5個小球,現(xiàn)從袋中每次取一個小球,每個小球被抽到的可能性均相同,不放回地抽取兩次,則在第一次抽到白球的條件下,第二次扔抽到白球的概率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

百貨大樓在五一節(jié)舉行抽獎活動,規(guī)則是:從裝有編為、、、四個小球的抽獎箱中同時抽出兩個小球,兩個小球號碼相加之和等于中一等獎,等于中二等獎,等于中三等獎。
(1)求中三等獎的概率;
(2)求中獎的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B兩個試驗方案在某科學(xué)試驗中成功的概率相同,已知A、B兩個方案至少一個方案試驗成功的概率是0.36.
(1)求兩個方案均獲成功的概率;
(2)設(shè)試驗成功的方案的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時,負(fù)的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為,各局比賽的結(jié)束相互獨立,第1局甲當(dāng)裁判.
(Ⅰ)求第4局甲當(dāng)裁判的概率;
(Ⅱ)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為
40秒,當(dāng)你到達(dá)路口時看見下列三種情況的概率各是多少?
(1) 紅燈     (2) 黃燈   (3) 不是紅燈

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一袋中有紅、黃、藍(lán)三種顏色的小球各一個,每次從中取出一個,記下顏色后放回,當(dāng)三種顏色的球全部取出時停止取球,則恰好取5次球時停止取球的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形的邊長為2,分別是邊的中點.
(1)在正方形內(nèi)部隨機取一點,求滿足的概率;
(2)從這八個點中,隨機選取兩個點,記這兩個點之間的距離的平方為,求

查看答案和解析>>

同步練習(xí)冊答案