13.若橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$的離心率為$e=\frac{1}{2}$,則m的值為(  )
A.$\frac{20}{3}$B.$\frac{15}{4}$或$\frac{20}{3}$C.$\frac{15}{4}$D.$\frac{20}{4}$

分析 當(dāng)m>5時(shí),a2=m,b2=5,c2=m-5,e2=$\frac{m-5}{m}=\frac{1}{4}$⇒m;
當(dāng)0<m<5時(shí),a2=5,b2=m,c2=5-m,e2=$\frac{5-m}{5}=\frac{1}{4}$⇒m;

解答 解:當(dāng)m>5時(shí),a2=m,b2=5,c2=m-5,e2=$\frac{m-5}{m}=\frac{1}{4}$⇒m=$\frac{20}{3}$;
當(dāng)0<m<5時(shí),a2=5,b2=m,c2=5-m,e2=$\frac{5-m}{5}=\frac{1}{4}$⇒m=$\frac{15}{4}$;
故選:B.

點(diǎn)評(píng) 本題考查了橢圓的離心率,及分類(lèi)討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=3x+4x-8的零點(diǎn)在區(qū)間[k,k+1](k∈Z)上,則函數(shù)g(x)=x-kex的極大值為( 。
A.-3B.0C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+b2-c2=ab,c=3,sinA+sinB=2$\sqrt{6}$sinAsinB,則△ABC的周長(zhǎng)為 3+3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=ax3+6x2+(a-1)x-5有極值的充要條件是( 。
A.a=-3或a=4B.-3<a<4C.a>4或a<-3D.a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖:空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,AD,CD,CB上的點(diǎn),且EF∥GH,求證:EF∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(-x-1)=f(x-1),當(dāng)x∈[-1,0]時(shí),f(x)=-x3,則關(guān)于x的方程f(x)=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上的所有實(shí)數(shù)解之和為( 。
A.-7B.-6C.-3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:
(1)直線(xiàn)DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.男嬰為24人,女?huà)霝?人;出生時(shí)間在白天的男嬰為31人,女?huà)霝?6人.
(1)將下面的2×2列聯(lián)表補(bǔ)充完整;
出生時(shí)間
性別
晚上白天合計(jì)
男嬰
女?huà)?/TD>
合計(jì)
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為嬰兒性別與出生時(shí)間有關(guān)系?
參考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)獨(dú)立性檢驗(yàn)的臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.比較下列各組數(shù)的大小:
(1)1.9與1.9-3
(2)0.7${\;}^{2-\sqrt{3}}$與0.70.3
(3)0.60.4與0.40.6

查看答案和解析>>

同步練習(xí)冊(cè)答案