(本題10分)某校高三某班的一次數(shù)學測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求分數(shù)在[50,60)的頻率及全班人數(shù);(2)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求分數(shù)在[90,100]之間的份數(shù)的數(shù)學期望

(1)25;(2)頻數(shù)為4,頻率0.016;(3)。

解析試題分析:(1)分數(shù)在[50,60)的頻率為0.008×10=0.08,由莖葉圖知:分數(shù)在[50,60)之間的頻數(shù)為2,所以全班人數(shù)為=25,   ┄┄┄┄2分
(2)分數(shù)在[80,90)之間的頻數(shù)為25-2-7-10-2=4;
頻率分布直方圖中[80,90)間的矩形的高為÷10=0.016.               ┄┄┄┄ 5分
(3)由(2)知分數(shù)在[80,90)之間的人數(shù)為4,由莖葉圖可知分數(shù)在[90,100]之間的人數(shù)為2 ,的可能取值為0,1,2.                      
,┄┄┄┄8分
隨機變量的分布列為

數(shù)學期望.            ┄┄┄┄ 10分
考點:頻率分布直方圖;莖葉圖;等可能事件的概率;數(shù)學期望。
點評:本題主要考查頻率分步直方圖和等可能事件的概率,本題是一個基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某學生參加某高校的自主招生考試,須依次參加A、B、C、D、E五項考試,如果前四項中有兩項不合格或第五項不合格,則該考生就被淘汰,考試即結(jié)束;考生未被淘汰時,一定繼續(xù)參加后面的考試。已知每一項測試都是相互獨立的,該生參加A、B、C、D四項考試不合格的概率均為,參加第五項不合格的概率為
(1)求該生被錄取的概率;
(2)記該生參加考試的項數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
為了解社會對學校辦學質(zhì)量的滿意程度,某學校決定用分層抽樣的方法從高中三個年級的家長委員會中共抽取6人進行問卷調(diào)查,已知高一、高二、高三的家長委員會分別有54人、1 8人、36人.
(I)求從三個年級的家長委員會中分別應抽的家長人數(shù);
(Ⅱ)若從抽得的6人中隨機抽取2人進行訓查結(jié)果的對比,求這2人中至少有一人是高三學生家長的慨率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)盒中有大小相同的編號為1,2,3,4,5,6的六只小球,規(guī)定:從盒中一次摸出'2只球,如果這2只球的編號均能被3整除,則獲一等獎,獎金10元,如果這2只球的編號均為偶數(shù),則獲二等獎,獎金2元,其他情況均不獲獎.
(1)若某人參加摸球游戲一次獲獎金x元,求x的分布列及期望;
(2)若某人摸一次且獲獎,求他獲得一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某機構向民間招募防爆犬,首先進行入圍測試,計劃考察三個項目:體能,嗅覺和反應.這三個項目中只要有兩個通過測試,就可以入圍.某訓犬基地有4只優(yōu)質(zhì)犬參加測試,已知它們通過體能測試的概率都是1/3,通過嗅覺測試的概率都是1/3,通過反應測試的概率都是1/2.
求(1)每只優(yōu)質(zhì)犬能夠入圍的概率;
(2)若每入圍1只犬給基地記10分,設基地的得分為隨機變量ξ,求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)為了參加年貴州省高中籃球比賽,某中學決定從四個籃球較強的班級中選出人組成男子籃球隊代表所在地區(qū)參賽,隊員來源人數(shù)如下表:

班級
高三()班
高三()班
高二()班
高二()班
人數(shù)




(I)從這名隊員中隨機選出兩名,求兩人來自同一班級的概率;(II)該中學籃球隊經(jīng)過奮力拼搏獲得冠軍.若要求選出兩位隊員代表冠軍隊發(fā)言,設其中來自高三(7)班的人數(shù)為,求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知關于x的二次函數(shù)
(1)設集合,從集合中隨機取一個數(shù)作為,從中隨機取一個數(shù)作為,求函數(shù)在區(qū)間上是增函數(shù)的概率;
(2)設點是區(qū)域內(nèi)的隨機點,求函數(shù)在區(qū)間上是增函數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
甲,乙兩人進行乒乓球比賽,約定每局勝者得分,負者得分,比賽進行到有一人比對方多分或打滿局時停止.設甲在每局中獲勝的概率為,且各局勝負相互獨立.若第二局比賽結(jié)束時比賽停止的概率為
(1)求的值;
(2)設表示比賽停止時比賽的局數(shù),求隨機變量的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
甲乙兩名射手互不影響地進行射擊訓練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們設計成績的分布列如下:

射手甲
射手乙
環(huán)數(shù)
8
9
10
環(huán)數(shù)
8
9
10
概率



概率



(Ⅰ)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中10環(huán)的概率;
(Ⅱ)若兩個射手各射擊1次,記所得的環(huán)數(shù)之和為,求的分布列和期望.

查看答案和解析>>

同步練習冊答案