((I)做出輔助線,根據(jù)所給的AE的長為m,AC的長為n,AD,AB的長是關于x的方程x
2-14x+mn=0的兩個根,得到比例式,根據(jù)比例式得到三角形相似,根據(jù)相似三角形的對應角相等,得到結論.
(II)根據(jù)所給的條件做出方程的兩個根,即得到兩條線段的長度,取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH,根據(jù)四點共圓得到半徑的大。
解:(I)連接DE,根據(jù)題意在△ADE和△ACB中,
AD×AB=mn=AE×AC,
即
又∠DAE=∠CAB,從而△ADE∽△ACB
因此∠ADE=∠ACB
∴C,B,D,E四點共圓.
(Ⅱ)m=4,n=6時,方程x
2-14x+mn=0的兩根為x
1=2,x
2=12.
故AD=2,AB=12.
取CE的中點G,DB的中點F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點,連接DH.
∵C,B,D,E四點共圓,
∴C,B,D,E四點所在圓的圓心為H,半徑為DH.
由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=
(12-2)=5.
故C,B,D,E四點所在圓的半徑為5