【題目】如圖,在某海岸P的附近有三個(gè)島嶼Q,R,S,計(jì)劃建立三座獨(dú)立大橋,將這四個(gè)地方連起來(lái),每座橋只連接兩個(gè)地方,且不出現(xiàn)立體交叉形式,則不同的連接方式有( ).
A.24種B.20種C.16種D.12種
【答案】D
【解析】
由建橋的方式可以分為兩類(lèi):(1)從一個(gè)地方出發(fā)向其他三個(gè)地方各建一橋,(2)一個(gè)地方最多建兩橋但不能交叉,利用去雜法,即可求解.
由建立三座大橋,將這四個(gè)地方連起來(lái),每座橋只連接兩個(gè)地方,且不出現(xiàn)立體交叉形式,
可分為兩類(lèi):
第一類(lèi):從一個(gè)地方出法向其他三個(gè)地方各建一座橋,共有4種不同的方法;
第二類(lèi):一個(gè)地方最多建兩座橋,如這樣的建橋方法:和屬于相同的建橋方法,所以共有種不同的方法,
其中交叉建橋方法,例如:這樣建橋不符合題意,共有4種,
所以第二類(lèi)建橋,共有種不同的建橋方法.
綜上可得,不同的連接方式有種.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F1作圓x2+y2=a2的切線(xiàn)交雙曲線(xiàn)右支于點(diǎn)M,若tan∠F1MF2=2,又e為雙曲線(xiàn)的離心率,則e2的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,,,,,邊上一點(diǎn),這里異于.由引邊的垂線(xiàn)是垂足,再由引邊的垂線(xiàn)是垂足,又由引邊的垂線(xiàn)是垂足.同樣的操作連續(xù)進(jìn)行,得到點(diǎn),,.設(shè),如圖所示.
(1)求的值;
(2)某同學(xué)對(duì)上述已知條件的研究發(fā)現(xiàn)如下結(jié)論:,問(wèn)該同學(xué)這個(gè)結(jié)論是否正確并說(shuō)明理由;
(3)用和表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列關(guān)系式,算出數(shù)列的前4項(xiàng),然后猜想它的通項(xiàng),并用數(shù)學(xué)歸納法證明你的猜想.
(1);
(2);
(3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個(gè)單位長(zhǎng)度.
(Ⅰ)求函數(shù)的解析式,并求其圖像的對(duì)稱(chēng)軸方程;
(Ⅱ)已知關(guān)于的方程在內(nèi)有兩個(gè)不同的解.
(1)求實(shí)數(shù)m的取值范圍;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一排個(gè)空位,四人就坐其中的個(gè)位子.
(1)若每人左、右兩邊都有空位,有幾種坐法?
(2)若個(gè)空位中,個(gè)相連,另個(gè)也相連,但個(gè)不連在一起,有幾種坐法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng)為“三角形”數(shù)列,對(duì)于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱(chēng)是數(shù)列的“保三角形函數(shù)”,.
(1)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求的取值范圍;
(2)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前項(xiàng)和,且滿(mǎn)足,證明是“三角形”數(shù)列;
(3)根據(jù)“保三角形函數(shù)的定義,對(duì)函數(shù),和數(shù)列1,提出一個(gè)正確的命題,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四棱錐P﹣ABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過(guò)點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com