【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,1].
(1)求m的值;
(2)若a,b,c∈R,且 =m,求證:a+2b+3c≥9.
【答案】
(1)解:函數(shù)f(x)=m﹣|x﹣2|,m∈R,故 f(x+2)=m﹣|x|,由題意可得m﹣|x|≥0的解集為[﹣1,1],
即|x|≤m 的解集為[﹣1,1],故m=1.
(2)證明:由a,b,c∈R,且 =1,
∴a+2b+3c=(a+2b+3c)( )
=1+ +1+ +1
=3+ + ≥3+6=9,當(dāng)且僅當(dāng) =1時(shí),等號(hào)成立.
所以a+2b+3c≥9
【解析】(1)由條件可得 f(x+2)=m﹣|x|,故有m﹣|x|≥0的解集為[﹣1,1],即|x|≤m 的解集為[﹣1,1],故m=1.(2)根據(jù)a+2b+3c=(a+2b+3c)( )=1+ +1+ +1,利用基本不等式證明它大于或等于9.
【考點(diǎn)精析】利用不等式的證明對題目進(jìn)行判斷即可得到答案,需要熟知不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線l的極坐標(biāo)方程為.
分別求圓的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
設(shè)直線交曲線于兩點(diǎn),曲線于兩點(diǎn),求的長;
為曲線上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著蘋果6手機(jī)的上市,很多消費(fèi)者覺得價(jià)格偏高,尤其是一部分大學(xué)生可望而不可及,因此“國美在線”推出無抵押分期付款購買方式,某分期店對最近100位采用分期付款的購買者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻 數(shù) | 35 | 25 | a | 10 | b |
已知分3期付款的頻率為0.15,并且店銷售一部蘋果6,顧客分1期付款,其利潤為1千元;分2期或3期付款,其利潤為1.5千元;分4期或5期付款,其利潤為2千元,以頻率作為概率.
(1)求事件A:“購買的3位顧客中,至多有1位分4期付款”的概率;
(2)用X表示銷售一該手機(jī)的利潤,求X的分布列及數(shù)學(xué)期望E(x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為,離心率為,橢圓的右頂點(diǎn)為.
(1)求該橢圓的方程;
(2)過點(diǎn)作直線交橢圓于兩個(gè)不同點(diǎn),求證:直線的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的右焦點(diǎn)F作兩條相互垂直的直線分別交橢圓于A,B,C,D四點(diǎn),則的值為( )
A. B. C. 1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關(guān)系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關(guān)系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的兩個(gè)零點(diǎn)為,,且.
(Ⅰ)求的取值范圍;
(Ⅱ)若,且函數(shù)在區(qū)間上的最大值為,試判斷點(diǎn)是否在直線上? 并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com