【題目】如圖所示,在三棱錐P-ABC中,平面PAB平面ABCABC是邊長為的等邊三角形,,點O,M分別是ABBC的中點.

1)證明:AC//平面POM;

2)求點B到平面POM的距離.

【答案】(1)證明見解析;(2)

【解析】

1)證明直線平行平面POM內(nèi)的直線,再利用線面平行判定定理證明;

(2)作BNOM,垂足為N,先證明BN平面POM,得到線段BN的長即為點B到平面POM的距離,再從BOM中求得BN的長.

1OM分別是AB,BC的中點,OM//AC.

又∵OM平面POM,AC平面POM

AC//平面POM.

(2)如圖所示,作BNOM,垂足為N,

,OAB的中點,.

平面PAB平面ABC,交線為AB,PO平面ABC,POBN.

,BN平面POM.

線段BN的長即為點B到平面POM的距離.

ABC是等邊三角形,可得BOM也是等邊三角形.

,,.

故點B到平面POM的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機(jī)地從中抽取50個零件進(jìn)行檢查是否合格,若較多零件不合格,則需對其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.

1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求的數(shù)學(xué)期望

2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.

附:若隨機(jī)變量服從正態(tài)分布,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與拋物線相交于,兩點,且,若,軸距離的乘積為

1)求的方程;

2)設(shè)點為拋物線的焦點,當(dāng)面積最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們稱n)元有序?qū)崝?shù)組(,,)為n維向量,為該向量的范數(shù).已知n維向量,其中,2,n.記范數(shù)為奇數(shù)的n維向量的個數(shù)為,這個向量的范數(shù)之和為.

1)求的值;

2)當(dāng)n為偶數(shù)時,求,(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù)是奇函數(shù),的定義域為.當(dāng)時, .(e為自然對數(shù)的底數(shù)).

(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;

(2)如果當(dāng)x≥1時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱中,平面平面,,,均為正三角形,EAB的中點.

(Ⅰ)證明:平面;

(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD中,∠BAD=60°,ACBD相交于點O.將△ABD沿BD折起,使頂點A至點M,在折起的過程中,下列結(jié)論正確的是(

A.BDCM

B.存在一個位置,使△CDM為等邊三角形

C.DMBC不可能垂直

D.直線DM與平面BCD所成的角的最大值為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A,B關(guān)于坐標(biāo)原點O對稱,,以M為圓心的圓過A,B兩點,且與直線相切,若存在定點P,使得當(dāng)A運動時,為定值,則點P的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案