已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=
n-g(x)m+2g(x)
是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m、n的值;
(3)若對(duì)任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.
分析:(1)設(shè)g(x)=ax(a>0且a≠1),利用g(3)=8,可得8=a3,解得a即可;
(2)利用奇函數(shù)的定義和性質(zhì)f(0)=0,f(-x)+f(x)=0即可得出;
(3)利用(1)(2)可證明函數(shù)f(x)在R上單調(diào)遞減,進(jìn)而即可解出t的取值范圍.
解答:解:(1)設(shè)g(x)=ax(a>0且a≠1),∵g(3)=8,∴8=a3,解得a=2.
∴g(x)=2x;    
(2)f(x)=
n-2x
m+2x+1
,
∵函數(shù)f(x)是定義在R上的奇函數(shù),∴f(0)=
n-1
m+2
=0
,解得n=1.
f(x)=
1-2x
m+2x+1

又f(-x)+f(x)=0,∴
1-2x
m+2x+1
+
1-2-x
m+2-x+1
=0

化為(m-2)(2-2x-2-x)=0,
∵上式對(duì)于任意實(shí)數(shù)都成立,∴m-2=0,解得m=2.
∴m=2,n=1; 
(3)由(2)可知:f(x)=
1-2x
2+2x+1
=
1
2
(
2
1+2x
-1)
,
∵函數(shù)y=2x在R上單調(diào)遞增,∴f(x)在R上單調(diào)遞減.
∵不等式f(2t-3t2)+f(t2-k)>0恒成立,
∴f(t2-k)>-f(2t-3t2)=f(3t2-2t)在R上恒成立,
∴t2-k<3t2-2t在R上恒成立,
即2t2-2t+k>0在R上恒成立.
∴△=4-8k<0,解得k>
1
2

∴k的取值范圍是k∈(
1
2
,+∞)
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性和單調(diào)性、指數(shù)函數(shù)的定義與性質(zhì)、恒成立問(wèn)題的等價(jià)轉(zhuǎn)化等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(2)=4,定義域?yàn)镽的函數(shù)f(x)=
-g(x)+n2g(x)+m
是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m,n的值;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(2)=4,定義域?yàn)镽,函數(shù)f(x)=
-g(x)+n2g(x)+m
是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m,n的值;
(3)若對(duì)任意的t∈[1,3],不等式f(t2-2t)+f(2t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=g(x)過(guò)點(diǎn)(1,3),函數(shù)f(x)=
-g(x)+ng(x)+1
是R上的奇函數(shù).
(I)求y=g(x)的解析式;
(II)求n的值并用定義域判定y=f(x)的單調(diào)性;
(III)討論關(guān)于x的方程xf(x)=m的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(2)=4,定義域?yàn)镽上的函數(shù)f(x)=
-g(x)+ng(x)+m
是奇函數(shù).
(Ⅰ)求y=g(x)與y=f(x)的解析式;
(Ⅱ)判斷y=f(x)在R上的單調(diào)性并用單調(diào)性定義證明;
(Ⅲ)若方程f(x)=b在(-∞,0)上有解,試證:-1<3f(b)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=g(x)滿(mǎn)足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=
n-g(x)m+2g(x)
是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m,n的值;
(3)若對(duì)任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案