已知函數(shù)f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=-(x-1)2+1,則當(dāng)x<0時(shí),f(x)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)偶函數(shù)的對(duì)稱(chēng)性進(jìn)行轉(zhuǎn)化即可.
解答: 解:若x<0,則-x>0,
∵當(dāng)x>0時(shí),f(x)=-(x-1)2+1,
∴f(-x)=-(-x-1)2+1=-(x+1)2+1,
∵函數(shù)f(x)是偶函數(shù),
∴f(-x)=f(x),
即f(-x)=-(x+1)2+1=f(x),
即f(x)=-(x+1)2+1=-x2-2x,(x<0),
故答案為:-x2-2x
點(diǎn)評(píng):本題主要考查函數(shù)解析式的求解,根據(jù)函數(shù)奇偶性的對(duì)稱(chēng)性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,周期為π,且在[
π
4
π
2
]上為增函數(shù)的是( 。
A、y=sin(x+
π
2
B、y=cos(x-
π
2
C、y=-sin(2x-π)
D、y=cos(2x+π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[-2,0]時(shí),函數(shù)y=3x的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinxcosx是( 。
A、最小正周期為2π且在[0,π]內(nèi)有且只有三個(gè)零點(diǎn)的函數(shù)
B、最小正周期為2π且在[0,π]內(nèi)有且只有二個(gè)零點(diǎn)的函數(shù)
C、最小正周期為π且在[0,π]內(nèi)有且只有三個(gè)零點(diǎn)的函數(shù)
D、最小正周期為π且在[0,π]內(nèi)有且只有二個(gè)零點(diǎn)的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別在四個(gè)坐標(biāo)系中畫(huà)出冪函數(shù)y=x
1
3
,y=x3,y=x
2
3
,y=x-2的草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2≥0},集合B={x|x-1>0},求A∩B、A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知c=
7
2
,△ABC的面積為
3
3
2
,又tanA+tanB=
3
(tanAtanB-1).
(Ⅰ)求角C的大小;
(Ⅱ)求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)椋?∞,0)∪(0,+∞)的偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-x
的定義域?yàn)?div id="heo4mun" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案