【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,焦距為2,拋物線(xiàn)的準(zhǔn)線(xiàn)經(jīng)過(guò)C的左焦點(diǎn)F.
(1)求C與M的方程;
(2)直線(xiàn)l經(jīng)過(guò)C的上頂點(diǎn)且l與M交于P,Q兩點(diǎn),直線(xiàn)FP,FQ與M分別交于點(diǎn)D(異于點(diǎn)P),E(異于點(diǎn)Q),證明:直線(xiàn)DE的斜率為定值.
【答案】(1)C:,M:(2)證明見(jiàn)解析
【解析】
(1)由題意可得,的值,運(yùn)用,求得,可得橢圓的方程,由的準(zhǔn)線(xiàn)經(jīng)過(guò)點(diǎn),求得,即可得解的方程;
(2)設(shè)直線(xiàn)的方程為,聯(lián)立直線(xiàn)與拋物線(xiàn)的方程,設(shè),,運(yùn)用韋達(dá)定理得之間的關(guān)系,再聯(lián)立直線(xiàn)與拋物線(xiàn)的方程解得的坐標(biāo),同理可得出的坐標(biāo),代入兩點(diǎn)間斜率計(jì)算公式即可得結(jié)果.
(1)由題意,得,,所以,,
所以,所以C的方程為,
所以,由于M的準(zhǔn)線(xiàn)經(jīng)過(guò)點(diǎn)F,
所以,所以,故M的方程為.
(2)證明:由題意知,l的斜率存在,故設(shè)直線(xiàn)l的方程為,
由,得.
設(shè),,
則,即且,,.
又直線(xiàn)FP的方程為,
由,得,
所以,所以,從而D的坐標(biāo)為.
同理可得E的坐標(biāo)為,
所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)為曲線(xiàn)上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線(xiàn)交曲線(xiàn)分別于,求面積的最小值,并求此時(shí)四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校共有教職工120人,對(duì)他們進(jìn)行年齡結(jié)構(gòu)和受教育程度的調(diào)查,其結(jié)果如下表:
本科 | 研究生 | 合計(jì) | |
35歲以下 | 40 | 30 | 70 |
35-50歲 | 27 | 13 | 40 |
50歲以上 | 8 | 2 | 10 |
現(xiàn)從該校教職工中任取1人,則下列結(jié)論正確的是( )
A.該教職工具有本科學(xué)歷的概率低于60%
B.該教職工具有研究生學(xué)歷的概率超過(guò)50%
C.該教職工的年齡在50歲以上的概率超過(guò)10%
D.該教職工的年齡在35歲及以上且具有研究生學(xué)歷的概率超過(guò)10%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax2+bx-ln x的導(dǎo)函數(shù)的零點(diǎn)分別為1和2.
(I) 求a , b的值;
(Ⅱ)若當(dāng)時(shí),恒成立, 求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形是梯形,如圖,,,,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(如圖2),且
(1)求證:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)G上的點(diǎn)到點(diǎn)的距離比它到直線(xiàn)的距離小2.
(1)求曲線(xiàn)G的方程.
(2)是否存在過(guò)F的直線(xiàn)l,使得l與曲線(xiàn)G相交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為A',且△A'BF的面積等于4?若存在,求出此時(shí)直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,E是棱DD1的中點(diǎn),F是側(cè)面CDD1C1上的動(dòng)點(diǎn),且B1F∥平面A1BE,記B1與F的軌跡構(gòu)成的平面為α.
①F,使得B1F⊥CD1
②直線(xiàn)B1F與直線(xiàn)BC所成角的正切值的取值范圍是[,]
③α與平面CDD1C1所成銳二面角的正切值為2
④正方體ABCD﹣A1B1C1D1的各個(gè)側(cè)面中,與α所成的銳二面角相等的側(cè)面共四個(gè).
其中正確命題的序號(hào)是_____.(寫(xiě)出所有正確的命題序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱(chēng)為圓方圖,把正方形及其內(nèi)切圓稱(chēng)為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線(xiàn)長(zhǎng)度相等.以塔底座的邊作方形.作方圓圖,會(huì)發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過(guò)米,則該木塔的高度可能是(參考數(shù)據(jù):)( )
A.米B.米C.米D.米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com