已知三棱錐的四個頂點均在半徑為的球面上,且滿足,,則三棱錐的側面積的最大值為
A.B.C.D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
(Ⅰ)若在邊BC上存在一點Q,使PQ⊥QD,求a的取值范圍;
(Ⅱ)當邊BC上存在唯一點Q,使PQ⊥QD時,求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC, △PAD是等邊三角形,已知BD=2AD=8,AB=2DC=(1)設M是PC上的一點,證明:平面MBD⊥平面PAD(2)求四棱錐P-ABCD的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到點,且在平面BCD上的射影O恰好在CD上.
(1)、求證:
(2)、求證:平面平面
(3)、求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖①,正三角形邊長2,邊上的高,分別為、中點,現(xiàn)將沿翻折成直二面角,如圖②
(1)判斷翻折后直線與面的位置關系,并說明理由
(2)求二面角的余弦值
(3)求點到面的距離

圖 ①                       圖 2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題8分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,.
(1)求證:AF//平面BDE;
(2)求異面直線AB與DE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四面體ABCD中,O、E分別是BD、BC的中點,

(I)求證:平面BCD;
(II)求點E到平面ACD的距離 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知三棱柱中,三個側面均為矩形,底面為等腰直角三角形, ,點為棱的中點,點在棱上運動.

(1)求證
(II)當點運動到某一位置時,恰好使二面角的平面角的余弦值為,求點到平面的距離;
(III)在(II)的條件下,試確定線段上是否存在一點,使得平面?若存在,確定其位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,ABCD-A1B1C1D1為正方體,下面結論錯誤的是
A.BD∥平面CB1D1B.AC1⊥BD
C.AC1⊥平面CB1D1D.異面直線ADCB所成的角為60°

查看答案和解析>>

同步練習冊答案