【題目】已知函數(shù),其中.
(Ⅰ)若函數(shù)在其定義域內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(Ⅱ)若,且關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題(Ⅰ)的定義域是,由于函數(shù)在其定義域內(nèi)單調(diào)遞減,所以在時(shí)恒成立,即在恒成立.解法一:因?yàn)?/span>,所以二次函數(shù)開口向下,對(duì)稱軸,問題轉(zhuǎn)化為;即可求出a的范圍;解法二,分離變量,得在恒成立,即,當(dāng)時(shí),取最小值,即可求出a 的范圍;(Ⅱ)由題意,即,
設(shè)則列表可知,,又,方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根.根據(jù)函數(shù)圖象可知, 即可求出b的范圍.
試題解析:解:(Ⅰ)的定義域是,求導(dǎo)得
依題意在時(shí)恒成立,即在恒成立.
這個(gè)不等式提供2種解法,供參考
解法一:因?yàn)?/span>,所以二次函數(shù)開口向下,對(duì)稱軸,問題轉(zhuǎn)化為
所以,所以的取值范圍是
解法二,分離變量,得在恒成立,即
當(dāng)時(shí),取最小值,∴的取值范圍是
(Ⅱ)由題意,即,
設(shè)則列表:
極大值 | 極小值 |
∴,,又方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根.
則, 得(注意)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定一次購物付款總額:
(1)如果不超過200元,則不給予優(yōu)惠;
(2)如果超過200元但不超過500元,則按標(biāo)價(jià)給予9折優(yōu)惠;
(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.
某人單獨(dú)購買A,B商品分別付款168元和423元,假設(shè)他一次性購買A,B兩件商品,則應(yīng)付款是
A. 413.7元 B. 513.7元 C. 546.6元 D. 548.7元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是邊長(zhǎng)為的棱形,且分別是的中點(diǎn).
(1)證明:平面;
(2)若二面角的大小為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=x (m∈N*).
(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;
(2)若該函數(shù)還經(jīng)過點(diǎn)(2, ),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.函數(shù)值域中的每一個(gè)數(shù)在定義域中一定只有一個(gè)數(shù)與之對(duì)應(yīng)
B.函數(shù)的定義域和值域可以是空集
C.函數(shù)的定義域和值域一定是數(shù)集
D.函數(shù)的定義域和值域確定后,函數(shù)的對(duì)應(yīng)關(guān)系也就確定了
E.函數(shù)的定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,為線段的中點(diǎn).將沿折起,使平面平面,得到幾何體,如圖2所示.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠今年擬舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費(fèi)m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤(rùn)y(萬元)表示為年促銷費(fèi)m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤(rùn)的最大值,此時(shí)促銷費(fèi)為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬元.為增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤(rùn)為萬元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來1000名員工創(chuàng)造的年總利潤(rùn)條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com