分析 將式子(a-b)2+($\sqrt{2-{a}^{2}}$-$\frac{9}$)2可以看成:動(dòng)點(diǎn)P(a,$\sqrt{2-{a}^{2}}$)與動(dòng)點(diǎn)Q(b,$\frac{9}$)之間距離的平方,再結(jié)合幾何意義求最小值.
解答 解:式子(a-b)2+($\sqrt{2-{a}^{2}}$-$\frac{9}$)2可以看成:
動(dòng)點(diǎn)P(a,$\sqrt{2-{a}^{2}}$)與動(dòng)點(diǎn)Q(b,$\frac{9}$)之間距離的平方,其中,
點(diǎn)P在半圓x2+y2=2(y≥0)上,圓心為O,半徑r=$\sqrt{2}$,
點(diǎn)Q在雙曲線xy=9上,如右圖,
根據(jù)基本不等式,|OQ|=$\sqrt{b^2+\frac{81}{b^2}}$≥3$\sqrt{2}$,
所以,|PQ|min=|OQ|min-r=3$\sqrt{2}$-$\sqrt{2}$,
因此,原式的最小值為:(3$\sqrt{2}$-$\sqrt{2}$)2=8,
故填:8.
點(diǎn)評(píng) 本題主要考查了雙曲線與圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | 1-$\frac{\sqrt{3}}{2}$ | D. | 1-$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{12}$個(gè)單位 | B. | 向右平移$\frac{π}{12}$個(gè)單位 | ||
C. | 向右平移$\frac{π}{4}$個(gè)單位 | D. | 向左平移$\frac{π}{4}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=3x-2 | B. | y=3x2-1 | C. | y=2x2+3x | D. | y=$\frac{2}{x}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com