分析 利用f(x)=ax+$\frac{a-2}{x}$+$\frac{^{2}}{{x}^{2}}$是奇函數(shù),求出b,利用且f(x)在(0,+∞)上存在最大值,求出a的范圍,即可求出a+b取值范圍.
解答 解:由題意可知,其定義域為(-∞,0)∪(0,+∞).
∵f(x)=ax+$\frac{a-2}{x}$+$\frac{^{2}}{{x}^{2}}$是奇函數(shù),
∴f(x)+f(-x)=0.因此代入原函數(shù),可得b=0.
∴f(x)=ax+$\frac{a-2}{x}$,
①a=0,f(x)=-$\frac{2}{x}$,在(0,+∞)上不存在最大值;
②a≠0,f(x)=a(x+$\frac{\frac{a-2}{a}}{x}$),
∵f(x)在(0,+∞)上存在最大值,
∴$\left\{\begin{array}{l}{a<0}\\{\frac{a-2}{a}>0}\end{array}\right.$,∴a<0,
綜上a<0,b=0,
∴a+b<0.
故答案為:(-∞,0).
點評 本題考查函數(shù)的性質(zhì),考查分類討論的數(shù)學(xué)思想,正確分類討論是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{25}{12}$ | C. | $\frac{9}{4}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com