若一個(gè)底面是正三角形的三棱柱的主視圖如下圖所示,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積為
19
3
π
19
3
π
分析:由已知的正視圖,我們可得該三棱柱的底面棱長(zhǎng)和高,進(jìn)而求出底面外接圓半徑r及球半徑R,最后依據(jù)球的表面積公式求出球的表面積.
解答:解:由已知底面是正三角形的三棱柱的正視圖,
我們可得該三棱柱的底面棱長(zhǎng)為2,高為1.
則底面外接圓半徑r=
2
3
3
,球心到底面的球心距d=
1
2

∴球半徑R2=
4
3
+
1
4
=
19
12

∴該球的表面積S=4πR2=
19
3
π

故答案為:
19
3
π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求表面積、球的表面積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積為(  )
A、
16
3
π
B、
19
3
π
C、
19
12
π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)底面是正三角形的三棱柱的主視圖如右圖所示,其頂點(diǎn)都在一個(gè)球面上,則該球的表面積( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)若一個(gè)底面是正三角形的三棱柱的正視圖如圖所示,則其表面積等于
24+8
3
24+8
3

查看答案和解析>>

同步練習(xí)冊(cè)答案