【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,分別為的中點.在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )
A.平面平面B.直線平面
C.直線平面D.直線平面
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,0),且圓C:x2+y2﹣6x+4y+4=0.
(Ⅰ)當直線過點P且與圓心C的距離為1時,求直線的方程;
(Ⅱ)設過點P的直線與圓C交于A、B兩點,若|AB|=4,求以線段AB為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下列命題:
①回歸直線恒過樣本點的中心,且至少過一個樣本點;
②兩個變量相關性越強,則相關系數(shù)就越接近于;
③對分類變量與,的觀測值越小,“與有關系”的把握程度越大;
④兩個模型中殘差平方和越小的模型擬合的效果越好.則正確命題的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對晝夜溫差大小與某種子發(fā)芽多少之間的關系進行研究,下面是3月1日至5日每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細記錄:
(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)顆 | 23 | 25 | 30 | 26 | 16 |
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均小于2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是等差數(shù)列,,是等比數(shù)列,,,,.
(1)求數(shù)列的通項公式;
(2)若,求當是偶數(shù)時,數(shù)列的前項和;
(3)若,是否存在實數(shù)使得不等式對任意的,恒成立?若存在,求出所有滿足條件的實數(shù),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.
()請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).
()要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司結(jié)合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了,,三種放假方案,調(diào)查結(jié)果如下:
支持方案 | 支持方案 | 支持方案 | |
35歲以下 | 20 | 40 | 80 |
35歲以上(含35歲) | 10 | 10 | 40 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從“支持方案”的人中抽取了6人,求的值;
(2)在“支持方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,是過定點且傾斜角為的直線,在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為 .
(1)寫出直線的參數(shù)方程,并將曲線的方程為化直角坐標方程;
(2)若曲線與直線相交于不同的兩點,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com