已知函數(shù)f(x)=2x2+ax-1,g(log2x)=x2-數(shù)學公式
(1)求函數(shù)g(x)的解析式,并寫出當a=1時,不等式g(x)<8的解集;
(2)若f(x)、g(x)同時滿足下列兩個條件:①?t∈[1,4]使f(-t2-3)=f(4t) ②?x∈(-∞,a],g(x)<8.
求實數(shù)a的取值范圍.

解:(1)令t=log2t,則x=2t,
∴g(t)=(2t2-=(2t2-,即g(x)=(2x2-
當a=1時,不等式g(x)<8,即(2x2-2•2x-8<0.
∴2x<4,解得x<2.
∴不等式g(x)<8的解集是{x|x<2}.
(2)①由題意,-,即a=2(t2-4t+3)=2(t-2)2-2,
由t∈[1,4],得a∈[-2,6].
②由題意,在x∈(-∞,a]上恒成立.
在x∈(-∞,a]上恒成立.
令μ=2x,則μ∈(0,2a],∴
∵函數(shù)在(0,2a]上為增函數(shù),
,
,解得,
∴a<
綜合①②,符合條件的實數(shù)a的取值范圍是{a|-2≤a≤}.
分析:(1)令t=log2t,則x=2t,故g(x)=(2x2-.由此能求出當a=1時,不等式g(x)<8的解集.
(2)①由-,知a=2(t2-4t+3)=2(t-2)2-2,由t∈[1,4],得a∈[-2,6].②由在x∈(-∞,a]上恒成立,知在x∈(-∞,a]上恒成立.綜合①②,能求出符合條件的實數(shù)a的取值范圍.
點評:本題考查不等式的解法和實數(shù)的取值范圍的求法.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案