某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù).
單位x(元)88.28.48.68.89
銷量y(件)908483807568
(1)若y與x的線性關(guān)系為:
y
=-20x+a,求a.
(2)預(yù)計(jì)在今后的銷售中,銷量y與單價(jià)仍然服從(1)中的有關(guān)系,且該產(chǎn)品的成本為4元/件,為了使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?
考點(diǎn):線性回歸方程
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)計(jì)算平均數(shù),利用b=-20,a=
y
-b
.
x
,即可求得回歸直線方程;
(2)設(shè)工廠獲得的利潤為L元,利用利潤=銷售收入-成本,建立函數(shù),利用配方法可求工廠獲得的利潤最大.
解答: 解:(1)
.
x
=
8+8.2+8.4+8.6+8.8+9
6
=8.5,
.
y
=
90+84+83+80+75+68
6
=80,
∵b=-20,a=
y
-b
.
x
,
∴a=80+20×8.5=250
(2)設(shè)工廠獲得的利潤為L元,則L=x(-20x+250)-4(-20x+250)=-20(x-
33
4
)2
+361.25
∴該產(chǎn)品的單價(jià)應(yīng)定為
33
4
元,工廠獲得的利潤最大.
點(diǎn)評(píng):本題主要考查回歸分析,考查二次函數(shù),考查運(yùn)算能力、應(yīng)用意識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的底面直徑AB=2a,母線SA=3a,在母線SB上任取一點(diǎn)C,當(dāng)C在什么位置時(shí),圓錐側(cè)面上從A到C的距離最短;并求出這個(gè)距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以a1為首項(xiàng)的數(shù)列{an}滿足an+1=
an+c,an<3
an
d
,an≥3

(Ⅰ)當(dāng)a1=1,c=1,d=3時(shí),求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)當(dāng)0<a1<1,c=1,d=3時(shí),試用數(shù)列a1表示數(shù)列{an}前100項(xiàng)的和S100;
(Ⅲ)當(dāng)0<a1
1
m
(m∈N*),c=
1
m
時(shí),正整數(shù)d≥3m時(shí),證明:數(shù)列a2-
1
m
,a3m+2-
1
m
,a6m+2-
1
m
,a9m+2-
1
m
成等比數(shù)列的充要條件是d=3m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}的首項(xiàng)為1,點(diǎn)(an,an+1)在直線y=x+1的圖象上,
(1)求數(shù)列{an}的通項(xiàng);
(2)bn=2an-13,求Sn=|b1|+|b2|+…+|bn|;
(3)cn=
1
(2an-1)(2an+1)
,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn
k
16
對(duì)一切n∈N*都成立的最大的正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)P(2,2)的直線l與圓(x-1)2+y2=5相切,且與直線ax-y+1=0平行,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫出如圖所示部分頻率分布直方圖.觀察圖形,回答下列問題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試成績的中位數(shù)(結(jié)果取整數(shù)值);
(3)估計(jì)這次考試的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xlnx.
(I)設(shè)F(x)=
1
2
mx 
2+f′(x)(m∈R),討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)過兩點(diǎn)A(x1,f′(x1)),B(x2f′(x2))(x1<x2)的直線的斜率為k,求證:0<k<
1
x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)動(dòng)點(diǎn)滿足{
 
(x-y+1)(x+y-4)≥0
x≥3
,則x2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=2-an,則
S4
a6
=
 

查看答案和解析>>

同步練習(xí)冊答案