(本小題滿分12分)
下列三個圖中,左邊是一個正方體截去一個角后所得多面體的直觀圖。右邊兩個是正視圖和側(cè)視圖.

(1)請在正視圖的下方,按照畫三視圖的要求畫出該多面體的俯視圖(不要求敘述作圖過程);
(2)求該多面體的體積(尺寸如圖).

(1)(2)

解析試題分析:(Ⅰ)作出俯視圖如下左圖所示
  ……………4分
俯視圖
(若只畫對外框,沒有畫對角線或?qū)蔷畫錯的,給2分)
(Ⅱ)依題意,該多面體是由一個正方體()截去一個三棱錐()而得到  ………………6分
∴ 截去的三棱錐體積  …………9分
  正方體體積   ……………10分
∴ 所求多面體的體積.……………12分
考點:三視圖與多面體體積
點評:多面體轉(zhuǎn)化為棱柱或棱錐再求其體積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高速公路收費站入口處的安全標(biāo)識墩如圖1所示。墩的上半部分是正四棱錐,下半部分是長方體。圖2、圖3分別是該標(biāo)識墩的正(主)視圖和俯視圖。

圖1             圖2               圖3
(1)請在正視圖右側(cè)畫出該安全標(biāo)識墩的側(cè)(左)視圖;
(2)求該安全標(biāo)識墩的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)一個四棱錐的直觀圖和三視圖如圖所示:

(1)求證:;
(2)求出這個幾何體的體積。
(3)若在PC上有一點E,滿足CE:EP=2:1,求證PA//平面BED。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 已知四棱錐,底面ABCD,其三視圖如下,若M是PD的中點

⑴ 求證:PB//平面MAC;
⑵ 求直線PC與平面MAC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,在直三棱柱中,底面為等邊三角形,且,、、分別是,的中點.

(1)求證:;
(2)求證:;
(3) 求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)如圖,圓柱內(nèi)有一個三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑.

(Ⅰ)證明:平面平面
(Ⅱ)設(shè),在圓柱內(nèi)隨機選取一點,記該點取自于三棱柱內(nèi)的概率為
(。┊(dāng)點C在圓周上運動時,求的最大值;
(ii)記平面與平面所成的角為,當(dāng)取最大值時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在四棱錐中,底面是矩形,,分別為線段、的中點,⊥底面.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面^平面;
(Ⅲ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.試探究點M的位置,使F—AE—M為直二面角
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐中,⊥平面,,,,的中點.
(Ⅰ)證明:⊥平面
(Ⅱ)若直線與平面所成的角和與平面所成的角相等,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案