(1)求異面直線BD和AA1所成的角;
(2)求二面角D-A1A-C的平面角的余弦值;
(3)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說明理由.
說明:理科的立體幾何一般是既可以用幾何法,也可以用建立空間直角坐標(biāo)系利用向量來解決的.
解:法一:連結(jié)BD交AC于O,則BD⊥AC,
連結(jié)A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°,
∴A1O2=AA12+AO2-2AA1·AO·cos60°=3.
∴AO2+A1O2=AA12.
∴A1O⊥AO,由于平面AA1C1C⊥平面ABCD,
∴A1O⊥底面ABCD.
∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,).
(1)由于=(-2,0,0),=(0,1,),
則·=0×(-2)+1×0+×0=0,
∴BD⊥AA1,即異面直線BD和AA1所成的角為90°.
(2)由于OB⊥平面AA1C1C,
∴平面AA1C1C的法向量n1=(1,0,0).
設(shè)n2⊥平面AA1D,則設(shè)n2=(x,y,z),得到取n2=(1,,-1).
∴cos〈n1,n2〉=.∴二面角D-A1A-C的平面角的余弦值是.
(3)假設(shè)在直線CC1上存在點(diǎn)P,使BP∥平面DA1C1,
設(shè)=λ,P(x,y,z),則(x,y-1,z)=λ(0,1,),
得P(0,1+λ,λ),=(-,1+λ,λ).
設(shè)n3⊥平面DA1C1,則設(shè)n3=(x3,y3,z3),
得到不妨取n3=(1,0,-1).
又因?yàn)?SUB>∥平面DA1C1,則n3·=0,即--λ=0,得λ=-1,
即點(diǎn)P在C1C的延長(zhǎng)線上且使C1C=CP.
法二:(1)過A1作A1O⊥AC于點(diǎn)O,由于平面AA1C1C⊥平面ABCD,
由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,
又底面為菱形,∴AC⊥BD.AA1⊥BD.
(2)在△AA1O中,AA1=2,∠A1AO=60°,
∴AO=AA1·cos60°=1.
∴O是AC的中點(diǎn),由于底面ABCD為菱形,
∴O也是BD中點(diǎn).
由(1)可知DO⊥平面AA1C,
過O作OE⊥AA1于E點(diǎn),連結(jié)OE,則AA1⊥DE,
則∠DEO為二面角D-AA1-C的平面角,
在菱形ABCD中,AB=2,∠ABC=60°,
∴AC=AB=BC=2.∴AO=1,DO==.
在Rt△AEO中,OE=OA·sin∠EAO=,
DE===.
∴cos∠DEO==.∴二面角DAA1C的平面角的余弦值是.
(3)存在這樣的點(diǎn)P,連結(jié)B1C,∵A1B1ABDC,
∴四邊形A1B1CD為平行四邊形.∴A1D∥B1C.
在C1C的延長(zhǎng)線上取點(diǎn)P,使C1C=CP,連結(jié)BP.
∵B1BC1C,∴B1BCP.∴四邊形BB1CP為平行四邊形,則BP∥B1C.
∴BP∥A1D.∴BP∥平面DA1C1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com