已知復數(shù)z1滿足(1+i)z1=1+3i,z2=1-ai(a∈R)且|z1-z2|<|z1|
(1)求復數(shù)z1;
(2)求實數(shù)a的取值范圍.
【答案】分析:(1)化簡復數(shù)為分式的形式,利用復數(shù)同乘分母的共軛復數(shù),化簡為a+bi的形式即可得到z1
(2)表示出|z1-z2|<|z1|,根據(jù)模長之間的關(guān)系得到a的關(guān)系式,即可求實數(shù)a的取值范圍.
解答:解:(1)=2+i
另解:設(shè)z1=m+ni(m,n∈R)
所以
解得m=2,n=1,所以z1=2+i
(2)|2+i-(1+ai)|<|2+i|
解得:-1<a<3.
點評:本題考查復數(shù)的基本運算,復數(shù)模的求法,考查計算能力,本題解題的關(guān)鍵是做出復數(shù)的代數(shù)形式的最簡結(jié)果.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1滿足(1+i)z1=-1+5i,z2=a-2-i,其中i為虛數(shù)單位,a∈R,若|z1-
.
z2
|
<|z1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1滿足(1+i)z1=-1+5i,z2=a-2-i,(a∈R),若|z1-
.
z2
| < |z1|
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1滿足(1-i)z1=1+3i,z2=a-i(a∈R),其中i為虛數(shù)單位.
(1)求z1
(2)若z1是關(guān)于x的實系數(shù)方程x2-px+q=0的一個根,求實數(shù)p、q的值.
(3)若 z1-
.
z2
 | > 
2
  |z1|
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閘北區(qū)一模)已知復數(shù)z1滿足(1+i)z1=3+i,復數(shù)z0滿足z0z1+
.
z0
=4

(1)求復數(shù)z0;
(2)設(shè)z0是關(guān)于x的實系數(shù)方程x2-px+q=0的一個根,求p、q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•崇明縣二模)已知復數(shù)z1滿足(1+i)z1=1+3i,z2=1-ai(a∈R)且|z1-z2|<|z1|
(1)求復數(shù)z1;
(2)求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案