【題目】x為實(shí)數(shù),[x]表示不超過(guò)x的最大整數(shù),則函數(shù)f(x)=x﹣[x]在R上為(
A.奇函數(shù)
B.偶函數(shù)
C.增函數(shù)
D.周期函數(shù)

【答案】D
【解析】解:∵f(x)=x﹣[x],
∴f(x+1)=(x+1)﹣[x+1]=x+1﹣[x]﹣1=x﹣[x]=f(x),
∴f(x)=x﹣[x]在R上為周期是1的函數(shù).
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x+x﹣5,那么方程f(x)=0的解所在區(qū)間是(n,n+1),則n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“a∈R,函數(shù)y=π”是增函數(shù)的否定是( 。
A.“a∈R,函數(shù)y=π”是減函數(shù)
B.“a∈R,函數(shù)y=π”不是增函數(shù)
C.“a∈R,函數(shù)y=π”不是增函數(shù)
D.“a∈R,函數(shù)y=π”是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x(x+1)=0},那么(
A.﹣1A
B.0∈A
C.1∈A
D.0A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:n∈N,n2>2n , 則¬p為(
A.n∈N,n2>2n
B.n∈N,n2≤2n
C.n∈N,n2≤2n
D.n∈N,n2=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax2+1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α、β是兩個(gè)不同的平面,m、n是兩條不同的直線,則下列命題中正確的是(
A.若m∥n,mα則n∥α
B.若m∥α,a∩β=n,則m∥n
C.若m⊥α,m⊥β則α∥β
D.若m⊥β,α⊥β,則m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,A={x|x2﹣5x+6≥0},則UA=(
A.{x|x>2}
B.{x|x>3或x<2}
C.{x|2≤x≤3}
D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2 , 若對(duì)任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案