a
=(4,-2,-4),
b
=(6,-3,2),則(2
a
-3
b
)•(
a
+2
b
)=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量模的公式,求出向量a,b的模,再求向量a,b的數(shù)量積,化簡(jiǎn)所求式子,代入數(shù)據(jù)即可得到結(jié)論.
解答: 解:|
a
|=
16+4+16
=6,|
b
|=
36+9+4
=7,
a
b
=4×6+(-2)×(-3)+(-4)×2=22,
則(2
a
-3
b
)•(
a
+2
b
)=2
a
2
-6
b
2
+
a
b
=2×36-6×49+22=-200.
故答案為:-200.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的坐標(biāo)公式和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由數(shù)字0,1,2,3,4組成的沒(méi)有重復(fù)數(shù)字且比2000大的四位數(shù)的個(gè)數(shù)為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)g(x)=log4(a•2x+a),若f(x)=g(x)有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x≥x2},N={x|y=2x,x∈R},則M∩N=( 。
A、(0,1)
B、[0,1]
C、[0,1)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},Sn是前n項(xiàng)的和,且滿足a1=2,對(duì)一切n∈N*都有Sn+1=3Sn+n2+2成立,設(shè)bn=an+n.
(1)求a2;
(2)求證:數(shù)列{bn}是等比數(shù)列;
(3)求
lim
n→∞
1
b1
+
1
b3
+…+
1
b2n-1
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若an=
2
n(n+2)
,則S10=( 。
A、
175
132
B、
11
12
C、
11
6
D、
175
66

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x2-ax+1有負(fù)值,則實(shí)數(shù)a的取值范圍是( 。
A、a≤-2
B、-2<a<2
C、a>2或a<-2
D、1<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x-
1
x
)=x2+
1
x2
,則f(x)=( 。
A、f(x)=x2+2
B、f(x)=x2-2
C、f(x)=(x+1)2
D、f(x)=(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a2=
1
2
,a4a5a6=64,則其公比q=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案