【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),PA=PD=PC,BC= AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若二面角P﹣AD﹣C為60°,求直線PB與平面QMB所成角的余弦值.
【答案】
(1)證明:連接BQ,連接AC交BQ于點(diǎn)O,連接OM.
∵Q為AD的中點(diǎn),BC= AD=2,
∴BC=DQ,又BC∥DQ,∠ADC=90°,
∴四邊形BCDQ是矩形.
∴BQ∥CD,又Q是AD的中點(diǎn),∴點(diǎn)O是AC的中點(diǎn).
又M是棱PC的中點(diǎn),∴OM∥PA.
又AP平面QMB,OM平面QMB,
∴直線PA∥平面QMB
(2)解:∵Q為AD的中點(diǎn),PA=PD,
∴PQ⊥AD,又BQ⊥AD,
∴∠PQB是二面角P﹣AD﹣C的二面角的平面角.
∴∠PQB=60°,
∴PA=PD=PC,
∴點(diǎn)P在平面ADC的射影是Rt△ACD的外心..
∵△ADC為等腰直角三角形,∴O為△ADC的外心,
∴PO⊥平面ABCD.
在Rt△PQO中,∵∠PQO=60°.
∴PO=2 .
過(guò)點(diǎn)O作Ox∥DA,以O(shè)x、OB、OC分別為x,y,z軸建立空間直角坐標(biāo)系.
取B(0,2,0),Q(0,﹣2,0),P(0,0,2 ),C(﹣2,2,0).
∵M(jìn)是PC的中點(diǎn),
∴M(﹣1,1, ).
=(﹣1,﹣1, ), =(0,﹣4,0).
設(shè)平面QMB的法向量為 =(x,y,z), , .
取 = ,
又 = .
∴直線PB與平面QMB所成角的正弦值是: = = .
∴直線PB與平面QMB所成角的余弦值為 .
【解析】(1)連接BQ,連接AC交BQ于點(diǎn)O,連接OM.由已知可得四邊形BCDQ是矩形.由BQ∥CD,又Q是AD的中點(diǎn),可得點(diǎn)O是AC的中點(diǎn).又M是棱PC的中點(diǎn),可得OM∥PA,即可證明直線PA∥平面QMB.(2)Q為AD的中點(diǎn),PA=PD,PQ⊥AD,又BQ⊥AD,∠PQB是二面角P﹣AD﹣C的二面角的平面角.由PA=PD=PC,可得點(diǎn)P在平面ADC的射影是Rt△ACD的外心.O為△ADC的外心,可得PO⊥平面ABCD.過(guò)點(diǎn)O作Ox∥DA,以O(shè)x、OB、OC分別為x,y,z軸建立空間直角坐標(biāo)系.設(shè)平面QMB的法向量為 =(x,y,z), ,可得 ,直線PB與平面QMB所成角的正弦值= .
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直線與平面平行的判定和空間角的異面直線所成的角,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,則實(shí)數(shù)a的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中P﹣ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD,E、F,分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點(diǎn)G,使得二面角C﹣PD﹣G的余弦值為 ,若存在,請(qǐng)求出點(diǎn)G的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三個(gè)連續(xù)的自然數(shù)?若存在,求△ABC的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐P﹣ABC的四個(gè)頂點(diǎn)都在球O的球面上,已知PA,PB,PC兩兩垂直,PA=1,PB+PC=4,當(dāng)三棱錐的體積最大時(shí),球心O到平面ABC的距離是( )
A.
B.
C.
D. ﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的高一、高二、高三共有學(xué)生1350人,其中高一500人,高三比高二少50人,為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生120人,則該樣本中的高二學(xué)生人數(shù)為( )
A.80
B.96
C.108
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A、B均為實(shí)數(shù)集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={﹣1,3},試用列舉法表示A+B;
(2)設(shè)a1= ,當(dāng)n∈N* , 且n≥2時(shí),曲線 的焦距為an , 如果A={a1 , a2 , …,an},B= ,設(shè)A+B中的所有元素之和為Sn , 對(duì)于滿足m+n=3k,且m≠n的任意正整數(shù)m、n、k,不等式Sm+Sn﹣λSk>0恒成立,求實(shí)數(shù)λ的最大值;
(3)若整數(shù)集合A1A1+A1 , 則稱A1為“自生集”,若任意一個(gè)正整數(shù)均為整數(shù)集合A2的某個(gè)非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問(wèn):是否存在一個(gè)整數(shù)集合既是自生集又是N*的基底集?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖像上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C: + =1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸,過(guò)點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過(guò)OE的中點(diǎn),則C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com