【題目】設(shè),函數(shù).
(I)證明:當(dāng)時(shí),對(duì)任意實(shí)數(shù),直線總是曲線的切線;
(Ⅱ)若存在實(shí)數(shù),使得對(duì)任意且,都有,求實(shí)數(shù)的最小值.
【答案】(I)見(jiàn)證明;(Ⅱ)-1
【解析】
(I)將代入函數(shù)解析式,再對(duì)函數(shù)求導(dǎo),由與的值,即可證明結(jié)論;
(Ⅱ)若存在實(shí)數(shù),使得對(duì)任意且,都有等價(jià)于存在實(shí)數(shù),使得對(duì)任意,都有,且對(duì)任意,都有,再由,得,進(jìn)而可求出結(jié)果.
易得的導(dǎo)數(shù).
(I)證明:此時(shí),.
注意到對(duì)任意實(shí)數(shù),,,
故直線是曲線在原點(diǎn)處的切線;
(Ⅱ)由題意,存在實(shí)數(shù),使得對(duì)任意,都有,且對(duì)任意,都有.
因,故(否則,若,則在的左右附近,恒有,
從而單調(diào)遞減,不合題意).
于是,因此.
又當(dāng),時(shí),(等號(hào)成立當(dāng)且僅當(dāng)),
于是在內(nèi)單調(diào)遞增,滿足題意.
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測(cè)量中的應(yīng)用,英國(guó)天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當(dāng)較小時(shí), )
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正四面體PQMN的頂點(diǎn)分別在給定的四面體ABCD的面上,每個(gè)面上恰有一個(gè)點(diǎn),那么,( ).
A. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無(wú)數(shù)個(gè),否則,正四面體PQMN只有一個(gè)
B. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無(wú)數(shù)個(gè),否則,正四面體PQMN不存在
C. 當(dāng)四面體ABCD的三組對(duì)棱分別相等時(shí),正四面體PQMN有無(wú)數(shù)個(gè),否則,正四面體PQMN只有一個(gè)
D. 對(duì)任何四面體ABCD,正四面體PQMN都有無(wú)數(shù)個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+cx+d在x=1處取極小值,x=3處取極大值,且函數(shù)圖象在(2,f(2))處的切線與直線x-5y=0平行.
(1)求實(shí)數(shù)abc的值;
(2)設(shè)函數(shù)f(x)=0有三個(gè)不相等的實(shí)數(shù)根,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】最近的一次數(shù)學(xué)競(jìng)賽共6道試題,每題答對(duì)得7分,答錯(cuò)(或不答)得0分.賽后某參賽代表隊(duì)獲團(tuán)體總分161分,且統(tǒng)計(jì)分?jǐn)?shù)時(shí)發(fā)現(xiàn):該隊(duì)任兩名選手至多答對(duì)兩道相同的題目.沒(méi)有三名選手都答對(duì)兩道相同的題目.試問(wèn)該隊(duì)選手至少有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時(shí),確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒(méi)有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒(méi)有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過(guò)測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3次.
(1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.
(2)試問(wèn)該選手選擇哪種方案通過(guò)測(cè)試的可能性較大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場(chǎng)占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下簡(jiǎn)稱外賣甲,外賣乙)的經(jīng)營(yíng)情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單(百單) | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單(百單) | 2.2 | 2.3 | 10 | 5 | 15 |
(1)據(jù)統(tǒng)計(jì)表明,與之間具有線性相關(guān)關(guān)系.
(ⅰ)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明:(若,則可認(rèn)為與有較強(qiáng)的線性相關(guān)關(guān)系(值精確到0.001))
(ⅱ)經(jīng)計(jì)算求得與之間的回歸方程為.假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤(rùn)3元,試預(yù)測(cè)當(dāng)外賣乙日接單量不低于2500單時(shí),外賣甲所獲取的日純利潤(rùn)的大致范圍:(值精確到0.01)
(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說(shuō)明這兩家外賣企業(yè)的經(jīng)營(yíng)狀況.
相關(guān)公式:相關(guān)系數(shù),
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直. ,,.
(1)求證:;
(2)求證:平面平面;
(3)線段上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com