【題目】已知雙曲線C: (a>0,b>0)過點A(1,0),且離心率為
(1)求雙曲線C的方程;
(2)已知直線x﹣y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

【答案】
(1)解:∵雙曲線C: (a>0,b>0)過點A(1,0),

∴a=1,

∵雙曲線的離心率為

∴e= = ,則c= ,

則b2=c2﹣a2=3﹣1=2,

則雙曲線C的方程為x2 =1


(2)解:由 ,

得x2﹣2mx﹣m2﹣2=0,

又∵中點在直線x﹣y+m=0上,

所以中點坐標為(m,2m),

代入x2+y2=5得m=±1滿足判別式△>0


【解析】(1)依題意 ,故 ,所以b2=2,由此能求出雙曲線方程.(2)由 ,得x2﹣2mx﹣m2﹣2=0,故 ,中點在直線x﹣y+m=0上,所以可得中點坐標為(m,2m),由此能求出m的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線經(jīng)過P(2,3),射在直線l:xy10,反射后穿過點Q(1,1).

(1)求入射光線的方程;

(2)求這條光線從PQ的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,角A,B,C所對的邊分別為a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1﹣cosC).

(1)判斷△ABC的形狀;
(2)在△ABC的邊AB,AC上分別取D,E兩點,使沿線段DE折疊三角形時,頂點A正好落在邊BC上的P點處,設(shè)∠BDP=θ,當(dāng)AD最小時,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若 ,曲線C為橢圓,且焦點坐標為 ;
⑤若t<1,曲線C為雙曲線,且虛半軸長為
其中真命題的序號為 . (把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體, 兩兩垂直, , ,

.

() 若點在線段,求證: 平面;

()求直線與平面所成的角的正弦值;

()求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點.從A點測得 M點的仰角∠MAN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=100m,則山高MN=m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(an , 2n), =(2n+1 , ﹣an+1),n∈N* , 向量 垂直,且a1=1
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國神舟十一號載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國轟動.開學(xué)后,某校高二年級班主任對該班進行了一次調(diào)查,發(fā)現(xiàn)全班60名同學(xué)中,對此事關(guān)注的占,他們在本學(xué)期期末考試中的物理成績(滿分100分)如下面的頻率分布直方圖:

(1)求“對此事關(guān)注”的同學(xué)的物理期末平均分(以各區(qū)間的中點代表該區(qū)間的均值).

(2)若物理成績不低于80分的為優(yōu)秀,請以是否優(yōu)秀為分類變量,

①補充下面的列聯(lián)表:

物理成績優(yōu)秀

物理成績不優(yōu)秀

合計

對此事關(guān)注

對此事不關(guān)注

合計

②是否有以上的把握認為“對此事是否關(guān)注”與物理期末成績是否優(yōu)秀有關(guān)系?

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有教職工500人,對他們進行年齡狀況和受教育程度的調(diào)查,其結(jié)果如下:

高中

?

本科

研究生

合計

35歲以下

10

150

50

35

245

35﹣50

20

100

20

13

153

50歲以上

30

60

10

2

102

隨機的抽取一人,求下列事件的概率:
(1)50歲以上具有?苹?qū)?埔陨蠈W(xué)歷;
(2)具有本科學(xué)歷;
(3)不具有研究生學(xué)歷.

查看答案和解析>>

同步練習(xí)冊答案