(04年福建卷文)定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時(shí),f(x)= x-2,則    (    )

       A.f(sin)<f(cos)                      B.f(sin)>f(cos)

       C.f(sin1)<f(cos1)                             D.f(sin)>f(cos)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)(12分)

甲、乙兩人參加一次英語口語考試,已知在備選的10道試題中,甲能答對(duì)其中的6題,乙能答對(duì)其中的8題.規(guī)定每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題才算合格.

(Ⅰ)分別求甲、乙兩人考試合格的概率;

(Ⅱ)求甲、乙兩人至少有一人考試合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)(12分)

在三棱錐S―ABC中,△ABC是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M為AB的中點(diǎn).

(Ⅰ)證明:AC⊥SB;

(Ⅱ)求二面角N―CM―B的大;

(Ⅲ)求點(diǎn)B到平面SMN的距離.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)(12分)

如圖,P是拋物線C:y=x2上一點(diǎn),直線l過點(diǎn)P并與拋物線C在點(diǎn)P的切線垂直,l與拋物線C相交于另一點(diǎn)Q.

(Ⅰ)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線l的方程;

(Ⅱ)當(dāng)點(diǎn)P在拋物線C上移動(dòng)時(shí),求線段PQ中點(diǎn)M的軌跡方程,并求點(diǎn)M到x軸的最短距離.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷理)定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,5]時(shí),f(x)=2-|x-4|,則

(A)f(sin)<f(cos)            (B)f(sin1)>f(cos1)

(C)f(cos)<f(sin)         (D)f(cos2)>f(sin2)

查看答案和解析>>

同步練習(xí)冊(cè)答案